Abstract
: The main goal of this work was to investigate the effects of silane-modified graphene nanosheets (MGNS) and modified nanoglass flakes (MNGF) on the physical and mechanical properties of vinyl-ester resin (VER) composites. The surface modification was evaluated about these composites' physical and mechanical behavior by techniques such as water absorption, tensile, three-point bending, and dynamic mechanical thermal analysis (DMTA). The analytical data revealed that the silane functionalized nanocomposites improved the interface between the nanosheets and vinyl-ester matrix. It was found that surface modification could significantly improve the dispersion and adhesion of GNS and nanoglass flakes (NGF) compared with those of neat vinyl-ester and unmodified composites. The presence functionalization of NGF and graphene nanosheets (GNS) in vinyl-ester formulation did affect the tensile and flexural strength and modulus, water absorption, and storage modulus. GNS/VER exhibited higher tensile and flexural strength and modulus than the original composite. DMTA results also showed incorporation of NGF and GNS decreased glass transition and increased storage modulus relative to neat composites. Nonetheless, the incorporation of functionalized graphene nanosheets and nano glass flakes represent higher Tg and storage modulus.
Publisher
AMG Transcend Association
Subject
Molecular Biology,Molecular Medicine,Biochemistry,Biotechnology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献