Affiliation:
1. Gomel State Medical University
2. Republican Scientific and Practical Centre for Traumatology and Orthopedics
Abstract
Purpose — to evaluate the presence and duration of antibiotic activity of antibiotic-impregnated bone cement based coatings samples against antibiotic-sensitive and antibiotic-resistant microorganisms.Material and Methods. Bone cement based coatings impregnated with antibiotics (gentamycin, vancomycin, colistin, meropenem, fosfomycin) are formed on titanium (Ti) plates. A plate rinse was carried out; antibiotic concentrations in the rinsed solutions were estimated by a serial broth microdilution method. Antibacterial activity of the control and rinsed samples against the antibiotic-sensitive and multiple-antibiotic-resistant Staphylococcus aureus and Pseudomonas aeruginosa strains was estimated by a bilayer agar method.Results. The meropenem and fosfomycin concentrations in the rinsed solutions obtained at a one-fold (16 μg/ml for both antibiotics) and two-fold treatment (2 μg/ml for meropenem and 8 μg/ml for fosfomycin) were sufficient to suppress the growth of the control strains. One-fold rinse of samples with colistin eliminated their antibacterial activity completely. The marked activity of the samples with meropenem and fosfomycin persisted against the antibiotic-sensitive P. aeruginosa ATCC 27853 strain after 2 rinse cycles; single-rinsed samples with fosfomycin also maintained the activity against the extensively antibioticresistant P. aeruginosa BP-150 strain. Vancomycin-containing samples possessed the sufficient antibacterial activity against both methicillin-sensitive (MSSA) and methicillin-resistant (MRSA) S. aureus strains; two-fold rinse of the samples eliminated their bactericidal properties.Conclusion. Bone cement based coatings impregnated with fosfomycin and meropenem possess the most marked and long-lasting antibacterial activity, manifested mainly against the antibiotic-sensitive strains.
Reference18 articles.
1. Arciola C.R., An Y.H., Campoccia D., Donati M.E., Montanaro L. Etiology of implant orthopedic infections: a survey on 1027 clinical isolates. Int J Artif Organs. 2005;28(11):1091-1100. DOI: 10.1177/039139880502801106.
2. Murillo O., Grau 1., Lora-Tamayo J., Gomez- Junyent J., Ribera A., Tubau F., Ariza J., Pallares R. The changing epidenuology of bacteraemic osteoarticular infections in the early 21st century. Clin Microbiol Infect 2015;21(3):254.el-8.2. DOI: 10.1016/j.cmi.2014.09.007.
3. Agrawal A.C., Jain S., Jain R.K., Raza H.K.T. Pathogenic bacteria in an orthopaedic hospital in India. / Infect Dev Ctries. 2008;2:120-123. DOI: 10.3855/jidc.282.
4. Rodriguez-Pardo D., Pigrau C., Lora-Tamayo J., Soriano A., del Toro M.D., Coho J. et al. Gram-negative prosthetic joint infection: outcome of a debridement, antibiotics and implant retention approach. A large multicentre study. Clin Microbiol Infect. 2014;20(11): 911-919. DOI: 10.1111/1469-0691.12649.
5. Pena С., Suarez С., Tubau F., Gutierrez О., Dominguez A., Oliver A., Pujol M., Gudiol F., Ariza J. Nosocomial spread of Pseudomonas aeruginosa producing the metallo-beta-lactamase VlM-2 in a Spanish hospital: clinical and epidemiological implications. Clin Microbiol Infect. 2007;13(10):1026-1029. DOI: 10.1111/j.l469-0691.2007.01784.x.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献