RESULTS of MORPHOLOGICAL ANALYSIS of ANIMAL HARD TISSUES IN NORMAL AND SIMULATED OSTEOPOROSIS USING A NON-INVASIVE COMPUTED MICROTOMOGRAPHY TECHNIQUE

Author:

Dolgalev A.1ORCID,Rzhepakovsky I.2,Danaev A.1ORCID,Avanisyan V.1ORCID,Shulga G.1ORCID,Korobkeev A.1ORCID

Affiliation:

1. Stavropol State Medical University of the Ministry of Health of the Russian Federation

2. North-Caucasus Federal University of the Ministry of Science and Higher Education of the Russian Federation

Abstract

Introduction. X-ray microtomography is a non-destructive method of microstructural analysis, which has a high level of detail and allows the possibility of assessing the internal architecture of organs and tissues using 3D-analysis[1]. The specifics of working with such equipment can be divided into in vivo and in vitro, i.e. working with live laboratory animals (mice, rats, rabbits) under anesthesia or studying organs and tissues separated from the animal [2].The aim of the work was to study the microstructure of sheep bone tissues in normal and simulated osteoporosis using computed microtomography.Materials and methods. We performed microCT analysis of different sheep bones in normal and experimental osteoporosis. Bone tissue of the jaw, iliac and femur, and teeth were collected from control and experimental animals. Bone tissue samples were fixed in 10% buffered formalin. X-ray microCT scanner Skyscan 1176 (BrukermicroCT, Belgium) and software Skyscan 1176 control program (10.0.0.0), Nrecon (1.7.4.2), DataViewer (1.5.6.2), CT-analyser (1.18.4.0), CTvox (3.3.0r1403) were used to scan and process materials.Results. MicroCT examination and 3D-imaging confirmed the elimination of trabeculae in the metaphyseal region of the femur in sheep with experimental osteoporosis from the centre to the periphery; in addition, 3D-analysis showed a 15.1% decrease in bone percentage, a 7.8% decrease in bone mineral density, and an increase in Tb. Sp. (trabecular separation), Tb. Pf. (trabecular pattern factor) and SMI (structure model index) by 30.2%, 20.8% and 23.6%, respectively, and a decrease in Tb.N. (trabecular number) index by 18.6%, indicating calcium washout, decreased trabecular connectivity and a transition from a lamellar to a rod-like architecture. Similar changes were found in the 3D-analysis of the jaw bone tissue. Thus, a decrease of 18.9% in mineral density was found, as well as a significant increase of 11.58 and 2.21 in the indices, particularly Tb. Pf. and SMI. 3D-analysis of iliac microtomography also indicates a simulation of osteoporosis, as evidenced by a significant increase in the main indices characterising the development of this pathology.Conclusions. The obtained results not only objectively testify to the development of osteoporosis in the experimental animals, but also indicate signs of the adaptation-compensatory reactions of the body, characterized by appearance of large single trabeculae in the metaphysis of the femur as well as by not expressed reduction of bone mineral density and bone tissue area.

Publisher

Alfmed LLC

Reference16 articles.

1. Grande, N.M.; Plotino, G.; Gambarini, G.; Testarelli, L.; D’Ambrosio, F.; Pecci, R.; Bedini, R. Present and future in the use of microCT scanner 3D-analysis for the study of dental and root canal morphology. Ann. Ist. Super. Sanità 2012, 48, 26–34.

2. Korzhevsky D. E., Gilyarov A. V. Fundamentals of histological technique.– SPb.: SpetsLit, 2010.– 95 p.

3. Charwat-Pessler, J.; Musso, M.; Petutschnigg, A.; Entacher, K.; Plank, B.; Wernersson, E.; Tangl, S.; Schuller-Gotzburg, P. a bone sample containing a bone graft substitute analyzed by correlating density information obtained by X-ray micro tomography with compositional information obtained by raman microscopy. Materials 2015, 8, 3831–3853.

4. Daly, S.M. Biophotonics for Blood Analysis; Elsevier: Amsterdam, The Netherlands, 2015; ISBN9780857096746.

5. Campioni, I.; Cacciotti, I.; Gupta, N. Additive manufacturing of reconstruction devices for maxillofacial surgery: Design and accuracy assessment of a mandibular plate prototype. Ann. Ist. Super. Sanità 2020, 56, 10–18.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Contrast Enhancement of 3D X-ray Microtomography Using CLAHE for Trabecular Bone Segmentation;2023 Global Medical Engineering Physics Exchanges/Pacific Health Care Engineering (GMEPE/PAHCE);2023-03-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3