Roles of Immune and Oxidative Stress-Related Factors in the Diagnosis of Coronary Artery Disease: A Retrospective Study

Author:

Shu Yue,Zheng Yin,Guo Yilong,Zhu Dan,Huang Shian

Abstract

Background: Coronary artery disease (CAD) is one of the main causes of sudden death, but its exact pathogenesis requires further study. Thus, this study aimed to explore the immune and oxidative stress-related factors in CAD progression and their roles in CAD diagnosis. Methods: Bioinformatics analysis was used in this study, and the GSE23561 dataset (training set) we used contained the transcriptome sequencing results of six CAD peripheral blood samples and nine control samples. The data were obtained and analysed by querying the Gene Expression Omnibus database. First, the differentially expressed immune and oxidative stress-related genes (DEIOGs) between the groups were identified. DEIOGs were then analysed based on Gene Ontology annotation and Kyoto Encyclopedia of Genes and Genomes pathway enrichment. A protein—protein interaction (PPI) network for DEIOGs was constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins database, and hub genes were identified through the PPI network. Moreover, transcription factors and microRNAs (miRNAs) targeting hub genes were identified to explore the potential regulatory mechanisms of hub genes. The receiver operating characteristic (ROC) curve analysis was constructed to examine the role of hub genes in CAD diagnosis. Finally, the data of GSE23561 (validated set) were used to validate the diagnostic potential of these hub genes. Results: Primarily, 66 DEIOGs were identified, which are involved in many important pathways related to CAD, such as the “mitogen-activated protein kinase (MAPK) signalling pathway” and “lipid and atherosclerosis”. A PPI network of DEIOGs was then constructed, and 10 hub genes were identified sequentially. A total of 37 transcription factors and 481 miRNAs that played important roles in hub genes regulation were identified. The ROC curves indicated that five special hub genes (Fos, Il6, Jun, Mapk3, and Mmp9) could serve as potential diagnostic biomarkers for CAD. Conclusions: Bioinformatics analysis technology was used to identify 10 hub DEIOGs that might play a crucial role in CAD progression, and five special hub genes (Fos, Il6, Jun, Mapk3, and Mmp9) could be regarded as potential biomarkers for CAD diagnosis. However, further studies are required to verify the functions of these hub genes.

Publisher

Forum Multimedia Publishing LLC

Subject

Cardiology and Cardiovascular Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3