Cooperative Swarm Intelligence Algorithms for Adaptive Multilevel Thresholding Segmentation of COVID-19 CT-Scan Images

Author:

Sabha MuathORCID,Thaher ThaerORCID,Emam Marwa M.ORCID

Abstract

The Coronavirus Disease 2019 (COVID-19) is widespread throughout the world and poses a serious threat to public health and safety. A COVID-19 infection can be recognized using computed tomography (CT) scans. To enhance the categorization, some image segmentation techniques are presented to extract regions of interest from COVID-19 CT images. Multi-level thresholding (MLT) is one of the simplest and most effective image segmentation approaches, especially for grayscale images like CT scan images. Traditional image segmentation methods use histogram approaches; however, these approaches encounter some limitations. Now, swarm intelligence inspired meta-heuristic algorithms have been applied to resolve MLT, deemed an NP-hard optimization task. Despite the advantages of using meta-heuristics to solve global optimization tasks, each approach has its own drawbacks. However, the common flaw for most meta-heuristic algorithms is that they are unable to maintain the diversity of their population during the search, which means they might not always converge to the global optimum. This study proposes a cooperative swarm intelligence-based MLT image segmentation approach that hybridizes the advantages of parallel meta-heuristics and MLT for developing an efficient image segmentation method for COVID-19 CT images. An efficient cooperative model-based meta-heuristic called the CPGH is developed based on three practical algorithms: particle swarm optimization (PSO), grey wolf optimizer (GWO), and Harris hawks optimization (HHO). In the cooperative model, the applied algorithms are executed concurrently, and a number of potential solutions are moved across their populations through a procedure called migration after a set number of generations. The CPGH model can solve the image segmentation problem using MLT image segmentation. The proposed CPGH is evaluated using three objective functions, cross-entropy, Otsu’s, and Tsallis, over the COVID-19 CT images selected from open-sourced datasets. Various evaluation metrics covering peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and universal quality image index (UQI) were employed to quantify the segmentation quality. The overall ranking results of the segmentation quality metrics indicate that the performance of the proposed CPGH is better than conventional PSO, GWO, and HHO algorithms and other state-of-the-art methods for MLT image segmentation. On the tested COVID-19 CT images, the CPGH offered an average PSNR of 24.8062, SSIM of 0.8818, and UQI of 0.9097 using 20 thresholds.

Publisher

Pensoft Publishers

Subject

General Computer Science,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3