RIPARIANET - Prioritising riparian ecotones to sustain and connect multiple biodiversity and functional components in river networks

Author:

Larsen StefanoORCID,Alvarez-Martinez Jose ManuelORCID,Barquin Jose,Bruno Maria CristinaORCID,Concostrina Zubiri LauraORCID,Gallitelli LucaORCID,Jonsson MicaelORCID,Laux MonikaORCID,Pace Giorgio,Scalici Massimiliano,Schulz Ralf

Abstract

Europe has committed to upscale ecosystems protection to include 30% of land and sea. However, due to historical overexploitation of natural assets, the available area for biodiversity protection is severely limited. Riparian zones are natural ecotones between aquatic and terrestrial ecosystems, contributing disproportionately to regional biodiversity and providing multiple ecosystem functions and services. Due to this and their branching geometry, riparian networks form a vast system of ‘blue-green arteries’ which physically and functionally connect multiple ecosystems over elevation gradients, despite covering a relatively small area of the basin. Hence, RIPARIANET argues that developing approaches able to optimise the spatial conservation of natural stream-riparian networks represent a flagship example of biodiversity protection in the EU. Although the integrity of riparian zones is fundamental for the achievement of multiple EU environmental objectives, the lack of a standardised framework for biodiversity assessment and protection across Member States has led to extensive impairment of riparian areas and frequent stakeholder conflicts. The main objective of RIPARIANET is to leverage the increasing resolution of remote sensing information to provide practitioners with evidence-based guidance and approaches to biodiversity conservation. Key questions include: i) how can we remotely assess riparian integrity and identify areas which provide effective connectivity allowing species biodiversity and ecosystem functions to persist through meta-ecological processes? ii) how can we disentangle the influence of local- and network-scale stressors and processes on riparian biodiversity to better implement river basin management schemes? iii) to what extent do currently existing protected areas in rivers account for the geometry of riparian networks and their multifunctionality? We will address these questions in riparian networks within six river basins in Europe, including Boreal, Continental, Alpine, Temperate and Mediterranean systems. First, we will gather local needs and interests from key stakeholders together with satellite imagery and GIS environmental data for all basins. Then, riparian and river ecosystems functions will be modelled and ecological hotspots will be identified through a GIS-based multi-criteria approach, including stakeholder inputs. Then, we will collect in situ data to assess multiple biodiversity and stressors at the local scale and, subsequently, scale-up this information to the network scale using geostatistical tools and advanced modelling. This knowledge will be conveyed to managers at local and EU scales in the form of decision-support tools allowing decision-makers to identify protection gaps and ecological hotspots along riparian networks, based on multiple biodiversity, functional and connectivity criteria.

Publisher

Pensoft Publishers

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3