Hybrid Classification Model for Emotion Prediction from EEG Signals: A Comparative Study

Author:

Bardak F. KebireORCID,Seyman M. NuriORCID,Temurtaş FeyzullahORCID

Abstract

This paper introduces a novel hybrid algorithm for emotion classification based on electroencephalogram (EEG) signals. The proposed hybrid model consists of two layers: the first layer includes three parallel adaptive neuro-fuzzy inference systems (ANFIS), and the second layer called the adaptive network comprises various models such as radial basis function neural network (RBFNN), probabilistic neural network (PNN), and ANFIS. It is examined that the feature distribution graphs of the dataset, which includes three emotion classes: positive, negative, and neutral, and selected the most appropriate features for classification. The three parallel ANFIS structures were trained using the selected features as input vectors, and the outputs of these models were combined to obtain a new feature vector. This feature vector was then used as the input to the adaptive network, which produced the output of emotion prediction. In addition, it is evaluated the accuracy of the network trained using only the first features of the dataset. The hybrid structure was designed to enhance the system's performance, and the best accuracy result of 96.51% was achieved using the ANFIS-ANFIS model. Overall, this study provides a promising approach for emotion classification based on EEG signals. 

Publisher

Pensoft Publishers

Subject

General Computer Science,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3