3D organotypic cell structures for drug development and Microorganism-Host interaction research

Author:

Zubareva Ekaterina V.ORCID,Nadezhdin Sergey V.ORCID,Nadezhdina Natalia A.ORCID,Belyaeva Veronika S.,Burda Yuriy E.,Avtina Tatyana V.ORCID,Gudyrev Oleg S.ORCID,Kolesnik Inga M.,Kulikova Svetlana Yu.,Mishenin Mikhail O.

Abstract

Introduction: The article describes a new method of tissue engineering, which is based on the use of three-dimensional multicellular constructs consisting of stem cells that mimic the native tissue in vivo – organoids. 3D cell cultures: The currently existing model systems of three-dimensional cultures are described. Characteristics of organoids and strategies for their culturing: The main approaches to the fabrication of 3D cell constructs using pluripotent (embryonic and induced) stem cells or adult stem cells are described. Brain organoids (Cerebral organoids): Organoids of the brain, which are used to study the development of the human brain, are characterized, with the description of biology of generating region-specific cerebral organoids. Lung organoids: Approaches to the generation of lung organoids are described, by means of pluripotent stem cells and lung tissue cell lines. Liver organoids: The features of differentiation of stem cells into hepatocyte-like cells and the creation of 3D hepatic organoids are characterized. Intestinal organoids: The formation of small intestine organoids from stem cells is described. Osteochondral organoids: Fabrication of osteochondral organoids is characterised. Use of organoids as test systems for drugs screening: The information on drug screening using organoids is provided. Using organoids to model infectious diseases and study adaptive responses of microorganisms when interacting with the host: The use of organoids for modeling infectious diseases and studying the adaptive responses of microorganisms when interacting with the host organism is described. Conclusion: The creation of three-dimensional cell structures that reproduce the structural and functional characteristics of tissue in vivo, makes it possible to study the biology of the body’s development, the features of intercellular interactions, screening drugs and co-cultivating with viruses, bacteria and parasites.

Publisher

Pensoft Publishers

Subject

Pharmacology (medical),Pharmacology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3