Genomic in situ hybridization in interspecific hybrids of scallops (Bivalvia, Pectinidae) and localization of the satellite DNA Cf303, and the vertebrate telomeric sequences (TTAGGG)n on chromosomes of scallop Chlamys farreri (Jones & Preston, 1904)

Author:

Hu Liping,Jiang Liming,Bi Ke,Liao Huan,Yang Zujing,Huang Xiaoting,Bao Zhenming

Abstract

Mitotic chromosome preparations of the interspecific hybrids Chlamysfarreri (Jones & Preston, 1904) × Patinopectenyessoensis (Jay, 1857), C.farreri × Argopectenirradinas (Lamarck, 1819) and C.farreri × Mimachlamysnobilis (Reeve, 1852) were used to compare two different scallop genomes in a single slide. Although genomic in situ hybridization (GISH) using genomic DNA from each scallop species as probe painted mitotic chromosomes of the interspecific hybrids, the painting results were not uniform; instead it showed species-specific distribution patterns of fluorescent signals among the chromosomes. The most prominent GISH-bands were mainly located at centromeric or telomeric regions of scallop chromosomes. In order to illustrate the sequence constitution of the GISH-bands, the satellite Cf303 sequences of C.farreri and the vertebrate telomeric (TTAGGG)n sequences were used to map mitotic chromosomes of C.farreri by fluorescence in situ hybridization (FISH). The results indicated that the GISH-banding pattern presented by the chromosomes of C.farreri is mainly due to the distribution of the satellite Cf303 DNA, therefore suggesting that the GISH-banding patterns found in the other three scallops could also be the result of the chromosomal distribution of other species-specific satellite DNAs.

Publisher

Pensoft Publishers

Subject

Genetics,Biotechnology,Animal Science and Zoology,Plant Science

Reference67 articles.

1. Cytogenetic characterization of the zebra mussel Dreissena polymorpha (Pallas) from Miedwie Lake, Poland.;Boroń;Folia Biologica (Kraków),2004

2. MOLECULAR ARRANGEMENT AND EVOLUTION OF HETEROCHROMATIC DNA

3. Cloning, characterization and chromosomal location of a satellite DNA from the Pacific oyster, Crassostrea gigas

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3