Relationship between meiotic behaviour and fertility in backcross-1 derivatives of the [(Gossypium hirsutum × G. thurberi)2 × G. longicalyx] trispecies hybrid

Author:

Konan N’guessan Olivier,Mergeai Guy

Abstract

Wild cotton species are an important source of desirable genes for genetic improvement of cultivated cotton Gossypium hirsutum Linnaeus, 1763. For the success of such an improvement, chromosome pairings and recombinations in hybrids are fundamental. The wild African species G. longicalyx Hutchinson & Lee, 1958 could be used as donor of the desirable trait of fiber fineness. Twelve BC1 plants obtained from the backcrossing of [(G. hirsutum × G. thurberi Todaro, 1877)2 × G. longicalyx] (AhDhD1F1, 2n = 4x = 52) trispecies hybrid (HTL) by G. hirsutum (cv. C2) (AhAhDhDh, 2n = 4x = 52) were investigated for meiotic behaviour and plant fertility. Their chromosome associations varied as follows: (2.5 to 11.5) I + (17 to 22) II + (0.31 to 1.93) III + (0.09 to 1.93) IV + (0 to 0.07) V + (0 to 0.14) VI. Their pollen fertility ranged from 4.67 to 32.10 %. Only four BC1 plants produced a few seeds through self-pollination. The remaining BC1 were totally self-sterile and usually presented the highest number of univalents. All BC1 materials produced BC2 seeds (0.44 to 6.50 seeds per backcross) with the number of seeds negatively correlated with the number of univalents (R2 = 0.45, P < 0.05). Most BC1 plants gave significantly finer fiber compared to the cultivated G. hirsutum. SSR markers showed a segregation of wild alleles among the backcross derivatives and Genomic in situ hybridization (GISH) revealed presence of entire chromosomes of G. longicalyx as well as recombinant chromosomes in the backcross derivatives. The significance and details of these results are presented and the prospects of successfully exploiting these plant materials are discussed.

Publisher

Pensoft Publishers

Subject

Genetics,Biotechnology,Animal Science and Zoology,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3