Characterization of the plastome of Physalis cordata and comparative analysis of eight species of Physalis sensu stricto

Author:

Sandoval-Padilla IsaacORCID,Zamora-Tavares María del PilarORCID,Ruiz-Sánchez EduardoORCID,Pérez-Alquicira JessicaORCID,Vargas-Ponce OfeliaORCID

Abstract

In this study, we sequenced, assembled, and annotated the plastome of Physalis cordata Mill. and compared it with seven species of the genus Physalissensu stricto. Sequencing, annotating, and comparing plastomes allow us to understand the evolutionary mechanisms associated with physiological functions, select possible molecular markers, and identify the types of selection that have acted in different regions of the genome. The plastome of P. cordata is 157,000 bp long and presents the typical quadripartite structure with a large single-copy (LSC) region of 87,267 bp and a small single-copy (SSC) region of 18,501 bp, which are separated by two inverted repeat (IRs) regions of 25,616 bp each. These values are similar to those found in the other species, except for P. angulata L. and P. pruinosa L., which presented an expansion of the LSC region and a contraction of the IR regions. The plastome in all Physalis species studied shows variation in the boundary of the regions with three distinct types, the percentage of the sequence identity between coding and non-coding regions, and the number of repetitive regions and microsatellites. Four genes and 10 intergenic regions show promise as molecular markers and eight genes were under positive selection. The maximum likelihood analysis showed that the plastome is a good source of information for phylogenetic inference in the genus, given the high support values and absence of polytomies. In the Physalis plastomes analyzed here, the differences found, the positive selection of genes, and the phylogenetic relationships do not show trends that correspond to the biological or ecological characteristics of the species studied.

Publisher

Pensoft Publishers

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3