Integration Model between Heterogeneous Data Services in a Cloud

Author:

Vieira Marcelo Aires,Ribeiro Elivaldo Lozer Fracalossi,Claro Daniela BarreiroORCID,Mane Babacar

Abstract

With the growth of cloud services, many companies have begun to persist and make their data available through services such as Data as a Service (DaaS) and Database as a Service (DBaaS). The DaaS model provides on-demand data through an Application Programming Inter- face (API), while DBaaS model provides on-demand database management systems. Different data sources require efforts to integrate data from different models. These model types include unstructured, semi-structured, and structured data. Heterogeneity from DaaS and DBaaS makes it challenging to integrate data from different services. In response to this problem, we developed the Data Join (DJ) method to integrate heterogeneous DaaS and DBaaS sources. DJ was described through canonical models and incorporated into a middleware as a proof-of-concept. A test case and three experiments were performed to validate our DJ method: the first experiment tackles data from DaaS and DBaaS in isolation; the second experiment associates data from different DaaS and DBaaS through one join clause; and the third experiment integrates data from three sources (one DaaS and two DBaaS) based on different data type (relational, NoSQL, and NewSQL) through two join clauses. Our experiments evaluated the viability, functionality, integration, and performance of the DJ method. Results demonstrate that DJ method outperforms most of the related work on selecting and integrating data in a cloud environment.

Funder

Fundação de Amparo à Pesquisa do Estado da Bahia

Publisher

Pensoft Publishers

Subject

General Computer Science,Theoretical Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sharing large data collections using data services in cloud environment;Journal of Intelligent Manufacturing and Special Equipment;2022-03-23

2. Incident Management for Explainable and Automated Root Cause Analysis in Cloud Data Centers    ;JUCS - Journal of Universal Computer Science;2021-11-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3