INAS: Interactive Argumentation Support for the Scientific Domain of Invasion Biology

Author:

Heger TinaORCID,Zarrieß Sina,Algergawy Alsayed,Jeschke JonathanORCID,König-Ries Birgitta

Abstract

Developing a precise argument is not an easy task. In real-world argumentation scenarios, arguments presented in texts (e.g. scientific publications) often constitute the end result of a long and tedious process. A lot of work on computational argumentation has focused on analyzing and aggregating these products of argumentation processes, i.e. argumentative texts. In this project, we adopt a complementary perspective: we aim to develop an argumentation machine that supports users during the argumentation process in a scientific context, enabling them to follow ongoing argumentation in a scientific community and to develop their own arguments. To achieve this ambitious goal, we will focus on a particular phase of the scientific argumentation process, namely the initial phase of claim or hypothesis development. According to argumentation theory, the starting point of an argument is a claim, and also data that serves as a basis for the claim. In scientific argumentation, a carefully developed and thought-through hypothesis (which we see as Toulmin's "claim'' in a scientific context) is often crucial for researchers to be able to conduct a successful study and, in the end, present a new, high-quality finding or argument. Thus, an initial hypothesis needs to be specific enough that a researcher can test it based on data, but, at the same time, it should also relate to previous general claims made in the community. We investigate how argumentation machines can (i) represent concrete and more abstract knowledge on hypotheses and their underlying concepts, (ii) model the process of hypothesis refinement, including data as a basis of refinement, and (iii) interactively support a user in developing her own hypothesis based on these resources. This project will combine methods from different disciplines: natural language processing, knowledge representation and semantic web, philosophy of science and -- as an example for a scientific domain -- invasion biology. Our starting point is an existing resource in invasion biology that organizes and relates core hypotheses in the field and associates them to meta-data for more than 1000 scientific publications, which was developed over the course of several years based on manual analysis. This network, however, is currently static (i.e. needs substantial manual curation to be extended to incorporate new claims) and, moreover, is not easily accessible for users who miss specific background and domain knowledge in invasion biology. Our goal is to develop (i) a semantic model for representing knowledge on concepts and hypotheses, such that also non-expert users can use the network; (ii) a tool that automatically computes links from publication abstracts (and data) to these hypotheses; and (iii) an interactive system that supports users in refining their initial, potentially underdeveloped hypothesis.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Pensoft Publishers

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Template for a Hypothesis Description paper;Research Ideas and Outcomes;2024-02-01

2. Introducing Hypothesis Descriptions;Research Ideas and Outcomes;2024-02-01

3. Hypothesis Description: Enemy Release Hypothesis;Research Ideas and Outcomes;2024-02-01

4. Natural Language Hypotheses in Scientific Papers and How to Tame Them;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3