Advancing impact assessments of non-native species: strategies for strengthening the evidence-base

Author:

Strubbe DiederikORCID,White RachelORCID,Edelaar Pim,Rahbek Carsten,Shwartz Assaf

Abstract

The numbers and impacts of non-native species (NNS) continue to grow. Multiple ranking protocols have been developed to identify and manage the most damaging species. However, existing protocols differ considerably in the type of impact they consider, the way evidence of impacts is included and scored, and in the way the precautionary principle is applied. These differences may lead to inconsistent impact assessments. Since these protocols are considered a main policy tool to promote mitigation efforts, such inconsistencies are undesirable, as they can affect our ability to reliably identify the most damaging NNS, and can erode public support for NNS management. Here we propose a broadly applicable framework for building a transparent NNS impact evidence base. First, we advise to separate the collection of evidence of impacts from the act of scoring the severity of these impacts. Second, we propose to map the collected evidence along a set of distinguishing criteria: where it is published, which methodological approach was used to obtain it, the relevance of the geographical area from which it originates, and the direction of the impact. This procedure produces a transparent and reproducible evidence base which can subsequently be used for different scoring protocols, and which should be made public. Finally, we argue that the precautionary principle should only be used at the risk management stage. Conditional upon the evidence presented in an impact assessment, decision-makers may use the precautionary principle for NNS management under scientific uncertainty regarding the likelihood and magnitude of NNS impacts. Our framework paves the way for an improved application of impact assessments protocols, reducing inconsistencies and ultimately enabling more effective NNS management.

Publisher

Pensoft Publishers

Subject

Insect Science,Plant Science,Ecological Modeling,Animal Science and Zoology,Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3