Modelling the likelihood of entry of marine non-indigenous species from internationally arriving vessels to maritime ports: a case study using New Zealand data

Author:

Hatami Rezvan,Inglis Graeme,Lane Stephen E.,Growcott Abraham,Kluza Daniel,Lubarsky Catherine,Jones-Todd Charlotte,Seaward Kimberley,Robinson Andrew P.ORCID

Abstract

The establishment of marine non-indigenous species (NIS) in new locations can degrade environmental, socio-cultural, and economic values. Vessels arriving from international waters are the main pathway for the entry of marine NIS, via exposure due to ballast water discharge (hereafter, ballast discharge) and biofouling. We developed a systematic statistical likelihood-based methodology to investigate port-level marine NIS propagule pressure from ballast discharge and biofouling exposure using a combination of techniques, namely k-Nearest-Neighbour and random forest algorithms. Vessel characteristics and travel patterns were assessed as candidate predictors. For the ballast discharge analysis, the predictors used for model building were vessel type, dead weight tonnage, and the port of first arrival; the predictors used for the biofouling analysis were days since last antifouling paint, mean vessel speed, dead weight tonnage, and hull niche area. Propagule pressure for both pathways was calculated at a voyage, port and annual level, which were used to establish the relative entry score for each port. The model was applied to a case study for New Zealand. Biosecurity New Zealand has commissioned targeted marine surveillance at selected ports since 2002 to enable early detection of newly arrived marine NIS (Marine High-Risk Site Surveillance, MHRSS). The reported methodology was used to compare contemporary entry likelihoods between New Zealand ports. The results suggested that Tauranga now receives the highest volume of discharged ballast water and has the second most biofouling exposure compared to all other New Zealand ports. Auckland was predicted to receive the highest biofouling mass and was ranked tenth for ballast discharge exposure. Lyttelton, Napier, and New Plymouth also had a high relative ranking for these two pathways. The outputs from this study will inform the refinement of the MHRSS programme, facilitating continued early detection and cost-effective management to support New Zealand’s wider marine biosecurity system. More generally, this paper develops an approach for using statistical models to estimate relative likelihoods of entry of marine NIS.

Funder

Ministry for Primary Industries

Publisher

Pensoft Publishers

Subject

Insect Science,Plant Science,Ecological Modeling,Animal Science and Zoology,Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3