Evidence of plant-soil feedback in South Texas grasslands associated with invasive Guinea grass

Author:

Bowman Elizabeth A.ORCID,Plowes Robert M.,Gilbert Lawrence E.

Abstract

Plant-soil feedback (PSF) processes play an integral role in structuring plant communities. In native grasslands, PSF has a largely negative or stabilizing effect on plant growth contributing to species coexistence and succession, but perturbations to a system can alter PSF, leading to long-term changes. Through changes to soil abiotic and biotic properties, invasion by non-native plants has a strong impact on belowground processes with broad shifts in historical PSFs. Guinea grass, Megathyrsus maximus, an emerging invasive in South Texas, can efficiently exclude native plants in part due to its fast growth rate and high biomass accumulation, but its impacts on belowground processes are unknown. Here, we provide a first look at PSF processes in South Texas savannas currently undergoing invasion by Guinea grass. In this pilot study, we addressed the question of how the presence of the invasive M. maximus may alter PSF compared to uninvaded grasslands. Under greenhouse conditions, we assessed germination and growth of Guinea grass and the seed bank in soil collected from grasslands invaded and uninvaded by Guinea grass. We found that Guinea grass grown in soil from invaded grasslands grew taller and accumulated higher biomass than in soil from uninvaded grasslands. Plants grown from the seed bank were more species rich and abundant in soil from uninvaded grasslands but had higher biomass in soil from invaded grasslands. In South Texas savannas, we found evidence to support shifts in the direction of PSF processes in the presence of Guinea grass with positive feedback processes appearing to reinforce invasion and negative feedback processes possibly contributing to species coexistence in uninvaded grasslands. Future work is needed to determine the mechanisms behind the observed shifts in PSF and further explore the role PSF has in Guinea grass invasion.

Publisher

Pensoft Publishers

Subject

Insect Science,Plant Science,Ecological Modeling,Animal Science and Zoology,Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3