Soil solarization based on natural soil moisture: a practical approach for reducing the seed bank of invasive plants in wetlands

Author:

Cohen OdedORCID,Gamliel Abraham,Katan Jaacov,Shubert Iris,Guy Aviv,Weber Gil,Riov Joseph

Abstract

Soil solarization is a well-established method to disinfect soil for efficient weed control. However, the feasibility of applying this method in the restoration of invaded natural habitats is unclear. This is because soil moisture is necessary for the success of solarization, but pre-irrigation in natural ecosystems is often not applicable, or demands high labor investment, making it unsuitable for use in restoration. The present study was based on the idea that the relatively high soil moisture in wetlands might obviate the need for pre-irrigation, rendering this method much more applicable in natural habitats. We examined the efficacy of soil solarization using natural soil moisture to control the seed bank of the invasive plant, Acacia saligna, in a wetland, using large-scale experimental plots (0.38 ha each). An old, dense A. saligna grove was cut down and the roots were removed by a bulldozer. The plot was mulched with a transparent polyethylene sheet in early July and left on the soil for 14 weeks. Soil solarization significantly reduced the viability of seeds of A. saligna that had been experimentally buried. Additionally, viability of seeds in the natural seed bank was reduced, and seedling emergence was close to zero. Exposing seeds to soil temperature and soil moisture levels equivalent to those obtained during field soil solarization under controlled conditions significantly increased the release from dormancy of the seeds, suggesting that release from dormancy during the early stage of solarization is a critical stage leading to seed weakening or mortality in the soil. Soil solarization also decreased the cover and abundance of the natural vegetation; therefore, active revegetation is required to restore the natural vegetation and to conserve endangered and endemic species.

Funder

Ministry of Science, Technology and Space

Publisher

Pensoft Publishers

Subject

Insect Science,Plant Science,Ecological Modeling,Animal Science and Zoology,Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3