Duplex real-time PCR assay for the simultaneous detection of Ophiostoma novo-ulmi and Geosmithia spp. in elm wood and insect vectors

Author:

Pepori Alessia L.ORCID,Luchi NicolaORCID,Pecori FrancescoORCID,Santini AlbertoORCID

Abstract

Dutch elm disease (DED) is a destructive tracheomycosis caused by Ophiostoma novo-ulmi, an ascomycete probably originating in East-Asia that is devastating natural elm populations throughout Europe, North America and Asia. The fungus is mainly spread by elm bark beetles that complete their life cycle between healthy and diseased elms. Recently, it has been highlighted that some fungi of the genus Geosmithia, which are similarly well associated with bark beetles, seem to also play a role in the DED pathosystem acting as mycoparasites of O. novo-ulmi. Although some relationship between the fungi is clear, the biological cycle of Geosmithia spp. within the DED cycle is still partly unclear, as is the role of Geosmithia spp. in association with the bark beetles. In this work, we tried to clarify these aspects by developing a qPCR duplex TaqMan assay to detect and quantify DNA of both fungi. The assay is extremely sensitive showing a limit of detection as low as 2 fg μl–1 for both fungi. We collected woody samples from healthy and infected elm trees throughout the beetle life cycle. All healthy elm samples were negative for both Geosmithia spp. and O. novo-ulmi DNA. Geosmithia spp. are never present in infected, but living trees, while they are present in frass of elm bark beetles (EBB – Scolytus spp.) and at each stage of the EBB life cycle in much higher quantities than O. novo-ulmi. This work provides a better understanding of the role and interactions occurring amongst the main players of the DED pathosystem.

Funder

European Commission

Publisher

Pensoft Publishers

Subject

Insect Science,Plant Science,Ecological Modeling,Animal Science and Zoology,Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3