The earliest beetle †Coleopsis archaica (Insecta: Coleo­ptera) – morphological re-evaluation using Reflectance Transformation Imaging (RTI) and phylogenetic assessment

Author:

Schädel MarioORCID,Yavorskaya Margarita,Beutel RolfORCID

Abstract

The earliest known fossil beetle †Coleopsis archaica is re-examined using Reflectance Transformation Imaging (RTI). The morphological observations are evaluated with respect to phylogenetic implications and the early evolution of Coleoptera. †Coleopsis archaica belongs to an early Permian branch of beetles, outside a monophyletic unit comprising Coleoptera (in the widest sense) excluding †Tshekardocoleidae. This clade is mainly characterized by a complex of apomorphic features: elytra with epipleura and with a close fit with the posterior body, thus forming a tightly sealed subelytral space. In contrast to this, the elytra of †C. archaica and †Tshekardocoleidae cover the metathorax and abdomen in a loose tent-like manner and posteriorly distinctly surpass the abdominal apex. So far, no synapomorphies of the two taxa from the first half of the Permian have been identified. The very short and transverse pronotum is likely an autapomorphy of †C. archaica. A thorough documentation of the structural features of early beetle fossils should have high priority. RTI is a very promising tool to obtain new and well-founded morphological data, which will allow a thorough phylogenetic evaluation of Permian beetles in future studies. We extended the conventional RTI workflow by focus merging and panoramic stitching, in order to overcome previous limitations. Taxonomic re-arrangements of stem group beetles including †C. archaica were suggested in recent studies by A.G. Kirejtshuk and co-workers. As they are not based on shared derived features they are irrelevant in a phylogenetic and evolutionary context.

Publisher

Pensoft Publishers

Subject

Insect Science,Genetics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3