Abstract
The paper deals with a production scheduling process, which is a problematic and it requires considering a lot of various factors while making the decision. Due to the specificity of the production system analysed in the practical example, the production scheduling problem was classified as a Job-shop Scheduling Problem (JSP). The production scheduling process, especially in the case of JSP, involves the analysis of a variety of data simultaneously and is well known as NP-hard problem. The research was performed in partnership with a company from the automotive industry. The production scheduling process is a task that is usually performed by process engineers. Thus, it can often be affected by mistakes of human nature e.g. habits, differences in experience and knowledge of engineers (their know-how), etc. The usage of heuristic algorithms was proposed as the solution. The chosen methods are genetic and greedy algorithms, as both of them are suitable to resolve a problem that requires analysing a lot of data. The paper presents both approaches: practical and theoretical aspects of the usefulness and effectiveness of genetic and greedy algorithms in a production scheduling process.
Subject
General Computer Science,Theoretical Computer Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献