Fast and Easy Access to Central European Biodiversity Data with BIOfid

Author:

Driller ChristineORCID,Koch MarkusORCID,Abrami Giuseppe,Hemati Wahed,Lücking Andy,Mehler Alexander,Pachzelt Adrian,Kasperek GerwinORCID

Abstract

The storage of data in public repositories such as the Global Biodiversity Information Facility (GBIF) or the National Center for Biotechnology Information (NCBI) is nowadays stipulated in the policies of many publishers in order to facilitate data replication or proliferation. Species occurrence records contained in legacy printed literature are no exception to this. The extent of their digital and machine-readable availability, however, is still far from matching the existing data volume (Thessen and Parr 2014). But precisely these data are becoming more and more relevant to the investigation of ongoing loss of biodiversity. In order to extract species occurrence records at a larger scale from available publications, one has to apply specialised text mining tools. However, such tools are in short supply especially for scientific literature in the German language. The Specialised Information Service Biodiversity Research*1 BIOfid (Koch et al. 2017) aims at reducing this desideratum, inter alia, by preparing a searchable text corpus semantically enriched by a new kind of multi-label annotation. For this purpose, we feed manual annotations into automatic, machine-learning annotators. This mixture of automatic and manual methods is needed, because BIOfid approaches a new application area with respect to language (mainly German of the 19th century), text type (biological reports), and linguistic focus (technical and everyday language). We will present current results of the performance of BIOfid’s semantic search engine and the application of independent natural language processing (NLP) tools. Most of these are freely available online, such as TextImager (Hemati et al. 2016). We will show how TextImager is tied into the BIOfid pipeline and how it is made scalable (e.g. extendible by further modules) and usable on different systems (docker containers). Further, we will provide a short introduction to generating machine-learning training data using TextAnnotator (Abrami et al. 2019) for multi-label annotation. Annotation reproducibility can be assessed by the implementation of inter-annotator agreement methods (Abrami et al. 2020). Beyond taxon recognition and entity linking, we place particular emphasis on location and time information. For this purpose, our annotation tag-set combines general categories and biology-specific categories (including taxonomic names) with location and time ontologies. The application of the annotation categories is regimented by annotation guidelines (Lücking et al. 2020). Within the next years, our work deliverable will be a semantically accessible and data-extractable text corpus of around two million pages. In this way, BIOfid is creating a new valuable resource that expands our knowledge of biodiversity and its determinants.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Pensoft Publishers

Reference6 articles.

1. TextAnnotator: A flexible framework for semantic annotations;Abrami;Proceedings of the Fifteenth Joint ACL - ISO Workshop on Interoperable Semantic Annotation,2019

2. TextAnnotator: A UIMA Based Tool for the Simultaneous and Collaborative Annotation of Texts;Abrami;Proceedings of The 12th Language Resources and Evaluation Conference,2020

3. TextImager: a Distributed UIMA-based System for NLP;Hemati;Proceedings of the COLING 2016 System Demonstrations,2016

4. Setup of BIOfid, a new Specialised Information Service for Biodiversity Research

5. BIOfid annotation guidelines, version 2.8;Lücking,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3