Establishing the nutritional landscape and macronutrient preferences of a major United States rangeland pest, Melanoplus sanguinipes, in field and lab populations

Author:

Zembrzuski Deanna,Woller Derek A.,Jech Larry,Black Lonnie R.,Reuter K. Chris,Overson Rick,Cease Arianne

Abstract

When given a choice, most animals will self-select an optimal blend of nutrients that maximizes growth and reproduction (termed “intake target” or IT). For example, several grasshopper and locust species select a carbohydrate-biased IT, consuming up to double the amount of carbohydrate relative to protein, thereby increasing growth, survival, and migratory capacity. ITs are not static, and there is some evidence they can change through ontogeny, with activity, and in response to environmental factors. However, little research has investigated how these factors influence the relative need for different nutrients and how subsequent shifts in ITs affect the capacity of animals to acquire an optimal diet in nature. In this study, we determined the ITs of 5th instar (final juvenile stage) Melanoplus sanguinipes (Fabricius, 1798), a prevalent crop and rangeland grasshopper pest in the United States, using two wild populations and one lab colony. We simultaneously collected host plants to determine the nutritional landscapes available to the wild populations and measured the performance of the lab colony on restricted diets. Overall, we found that the diet of the wild populations was more carbohydrate-biased than their lab counterparts, as has been found in other grasshopper species, and that their ITs closely matched their nutritional landscape. However, we also found that M. sanguinipes had the lowest performance metrics when feeding on the highest carbohydrate diets, whereas more balanced diets or protein-rich diets had higher performance metrics. This research may open avenues for studying how management strategies coincide with nutritional physiology to develop low-dose treatments specific to the nutritional landscape for the pest of interest.

Publisher

Pensoft Publishers

Subject

Insect Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3