Improving Malaria Detection Using L1 Regularization Neural Network

Author:

Hcini GhazalaORCID,Jdey ImenORCID,Ltifi HelaORCID

Abstract

Malaria is a huge public health concern around the world. The conventional method of diagnosing malaria is for qualified technicians to visually examine blood smears for parasite-infected red blood cells under a microscope. This procedure is ineffective. It takes time and requires the expertise of a skilled specialist. The diagnosis is dependent on the individual performing the examination’s experience and understanding. This article offers a new and robust deep learning model for automatically classifying malaria cells as infected or uninfected. This approach is based on a convolutional neural network (CNN). It improved by the regularization method on a publicly available dataset which contains 27, 558 cell images with equal instances of parasitized and uninfected cells from the National Institute of health. The performance of our proposed model is 99.70% of accuracy and 0.0476 loss value.

Publisher

Pensoft Publishers

Subject

General Computer Science,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3