Abstract
Malaria is a huge public health concern around the world. The conventional method of diagnosing malaria is for qualified technicians to visually examine blood smears for parasite-infected red blood cells under a microscope. This procedure is ineffective. It takes time and requires the expertise of a skilled specialist. The diagnosis is dependent on the individual performing the examination’s experience and understanding. This article offers a new and robust deep learning model for automatically classifying malaria cells as infected or uninfected. This approach is based on a convolutional neural network (CNN). It improved by the regularization method on a publicly available dataset which contains 27, 558 cell images with equal instances of parasitized and uninfected cells from the National Institute of health. The performance of our proposed model is 99.70% of accuracy and 0.0476 loss value.
Subject
General Computer Science,Theoretical Computer Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献