Big Data between Quality and Security: Dynamic Access Control for Collaborative Platforms

Author:

Talha Mohamed,Abou El Kalam Anas

Abstract

Big Data often refers to a set of technologies dedicated to deal with large volumes of data. Data Quality and Data Security are two essential aspects for any Big Data project. While Data Quality Management Systems are about putting in place a set of processes to assess and improve certain characteristics of data such as Accuracy, Consistency, Completeness, Timeliness, etc., Security Systems are designed to protect the Confidentiality, Integrity and Availability of data. In a Big Data environment, data quality processes can be blocked by data security mechanisms. Indeed, data is often collected from external sources that could impose their own security policies. In many research works, it has been recognized that merging and integrating access control policies are real challenges for Big Data projects. To address this issue, we suggest in this paper a framework to secure data collection in collaborative platforms. Our framework extends and combines two existing frameworks namely: PolyOrBAC and SLA- Framework. PolyOrBAC is a framework intended for the protection of collaborative environments. SLA-Framework, for its part, is an implementation of the WS-Agreement Specification, the standard for managing bilaterally negotiable SLAs (Service Level Agreements) in distributed systems; its integration into PolyOrBAC will automate the implementation and application of security rules. The resulting framework will then be incorporated into a data quality assessment system to create a secure and dynamic collaborative activity in the Big Data context.

Publisher

Pensoft Publishers

Subject

General Computer Science,Theoretical Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Current Challenges of Big Data Quality Management in Big Data Governance: A Literature Review;Lecture Notes on Data Engineering and Communications Technologies;2024

2. Data Quality Identification Model for Power Big Data;Communications in Computer and Information Science;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3