Insights into the ecological impact of trout introduction in an oligotrophic lake using sedimentary environmental DNA

Author:

Schallenberg Lena A.ORCID,Thomson-Laing GeorgiaORCID,Kelly David,Pearman John K.ORCID,Howarth Jamie D.ORCID,Vandergoes Marcus J.,Puddick Jonathan,Fitzsimons SeanORCID,Rees Andrew,Wood Susanna A.ORCID

Abstract

Introduced trout can induce trophic cascades, however, a lack of pre-introduction data limits knowledge on their impact in many lakes. Traditional paleolimnological approaches have been used to study historic species changes, but until recently these have been restricted to taxa with preservable body-parts. To explore the ecosystem effects of Salmo trutta (brown trout) introduction on an oligotrophic lake in Aotearoa-New Zealand, we used a multi-marker sedimentary environmental DNA (sedDNA) approach coupled with pigments to detect changes across multiple trophic levels. DNA was extracted from core depths capturing approximately 100 years before and after the expected arrival of S. trutta, and metabarcoding was undertaken with four primer sets targeting the 12S rRNA (fish), 18S rRNA (eukaryotes) and cytochrome c oxidase (COI; eukaryotes) genes. The earliest detection of S. trutta eDNA was 1906 (1892–1919 CE with 95% high probability density function) suggesting their introduction was shortly before this. Native fish diversity (12S and 18S rRNA) decreased after the detection of S. trutta, albeit the data was patchy. A shift in overall eukaryotic and algal communities (18S rRNA and COI) was observed around 1856 (1841–1871 CE) to 1891 (1877–1904 CE), which aligns with the expected S. trutta introduction. However, taxonomy could not be assigned to many of the 18S rRNA and COI sequences. Pigment concentrations did not change markedly after S. trutta introduction. SedDNA provides a new tool for understanding the impact of disturbances such as the introduction of non-native species; however, there are still several methodological challenges to overcome.

Funder

Ministry of Business, Innovation and Employment

Publisher

Pensoft Publishers

Subject

Nature and Landscape Conservation,Genetics,Animal Science and Zoology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3