New developments in the analysis of catch time series as the basis for fish stock assessments: The CMSY++ method

Author:

Froese RainerORCID,Winker Henning,Coro GianpaoloORCID,Palomares Maria-Lourdes "Deng"ORCID,Tsikliras Athanassios C.ORCID,Dimarchopoulou DonnaORCID,Touloumis KonstantinosORCID,Demirel NazliORCID,Vianna Gabriel M. S.,Scarcella Giuseppe,Schijns Rebecca,Liang Cui,Pauly Daniel

Abstract

Following an introduction to the nature of fisheries catches and their information content, a new development of CMSY, a data-limited stock assessment method for fishes and invertebrates, is presented. This new version, CMSY++, overcomes several of the deficiencies of CMSY, which itself improved upon the “Catch-MSY” method published by S. Martell and R. Froese in 2013. The catch-only application of CMSY++ uses a Bayesian implementation of a modified Schaefer model, which also allows the fitting of abundance indices should such information be available. In the absence of historical catch time series and abundance indices, CMSY++ depends strongly on the provision of appropriate and informative priors for plausible ranges of initial and final stock depletion. An Artificial Neural Network (ANN) now assists in selecting objective priors for relative stock size based on patterns in 400 catch time series used for training. Regarding the cross-validation of the ANN predictions, of the 400 real stocks used in the training of ANN, 94% of final relative biomass (B/k) Bayesian (BSM) estimates were within the approximate 95% confidence limits of the respective CMSY++ estimate. Also, the equilibrium catch-biomass relations of the modified Schaefer model are compared with those of alternative surplus-production and age-structured models, suggesting that the latter two can be strongly biased towards underestimating the biomass required to sustain catches at low abundance. Numerous independent applications demonstrate how CMSY++ can incorporate, in addition to the required catch time series, both abundance data and a wide variety of ancillary information. We stress, however, the caveats and pitfalls of naively using the built-in prior options, which should instead be evaluated case-by-case and ideally be replaced by independent prior knowledge.

Funder

European Commission

Publisher

Pensoft Publishers

Subject

Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3