A Comparative Study of Data Mining Methods for Solar Radiation and Temperature Forecasting Models

Author:

Alay F. DidemORCID,İlhan NagehanORCID,Güllüoğlu M. TahirORCID

Abstract

Photovoltaic (PV) energy systems are a leading type of renewable energy systems globally. Predicting PV energy production accurately is crucial for maintaining efficient energy grids, making informed decisions in the energy market, and reducing maintenance costs. To ensure high accuracy and optimal production, it is essential to monitor and analyze these variables regularly. Solar radiation and temperature are two meteorological variables that directly affect the quantity of PV energy generated in PV facilities. The Performance Ratio (PR) is a critical parameter for assessing PV plant performance. A comprehensive model was constructed in this study to forecast solar radiation and temperature using multiple machine learning methods, including Instance-Based K-Nearest Neighbor Algorithm (IBK), Linear Regression, Random Forests, Random Tree, Multilayer Perceptron (MLP), and MLP Regression. Moreover, we used time series approaches, such as Simple Exponential Smoothing (SES), Error-Trend-Seasonality (ETS), Autoregressive Integrated Moving Average (ARIMA) and Holt Winter's Seasonal Method (HWES) models for PV systems prediction. Initially, we conducted daily forecasts as well as 1-step ahead forecasts at 5-minute intervals for both solar radiation and temperature. It is crucial to subject both variables to the same methodology in order to construct precise models for forecasting PV. Secondly, we compared the predicted values of solar radiation and temperature with the actual energy yield of the power plant to calculate energy production. Subsequently, a relative analysis of data mining models and time series models have been performed depending on the statistical error criteria like RMSE, MAPE, MABE, MAE, MSE, and direction accuracy (DAC). 

Publisher

Pensoft Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3