Climatological parameters estimation based on artificial intelligence techniques with particle swarm optimization and deep neural networks

Author:

Yalçın SercanORCID,Eşit MusaORCID,Yuce Mehmet İshakORCID

Abstract

Climate forecasting plays an important role for human life in many areas such as water management, agriculture, natural hazards including drought and flood, tourism, business, and regional investment. Estimating these data is a difficult task as the time series climate parameter values vary monthly and seasonally. Therefore, predicting climate parameters based on learning and artificial intelligence is important to long-term efficient results in these fields. For this purpose, in this study, a time-series based Long Short-Term Memory (LSTM) deep neural network is proposed to predict future climate in Çankırı and Adıyaman cities in Turkey. With the help of this network, the average temperature, relative humidity, and precipitation values, which are known as the most effective climate parameters, have been estimated. An improved Particle Swarm Optimization (PSO) technique is also proposed to optimize input weight values of the LSTM deep network, and reduce the estimation errors. The proposed algorithm is compared with deep models of LSTM variants based on Root Mean Square Error (RMSE), Mean Absolute Deviation (MADE), and Mean Absolute Percentage Error (MAPE) metrics. The proposed adaptive LSTM-PSO and non-adaptive LSTM-PSO models achieved at RMSE 0.98 and 1.05 for temperature, 1.19 and 1.27 for relative humidity, and 4.21 and 4.67 for precipitation estimation, respectively. The RMSE is %7 lower with the proposed adaptive LSTM-PSO method than proposed non-adaptive LSTM-PSO method.

Publisher

Pensoft Publishers

Subject

General Computer Science,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3