Natural Language Enhancement for English Teaching Using Character-Level Recurrent Neural Network with Back Propagation Neural Network based Classification by Deep Learning Architectures

Author:

Yang ZhilingORCID

Abstract

Natural Language Processing (NLP) is an efficient method for enhancing educational outcomes. In educational settings, implementing NLP entails starting the learning process through natural acquisition. English teaching and learning have received increased attention from the relevant education departments as an integral aspect of the new curriculum reform. The environment of English teaching and learning is undergoing extraordinary changes as a result of the constant improvement and extension of teaching level and scale, as well as the growth of Internet information technology. As a result, the current research aims to look into techniques for efficiently using AI (artificial intelligence) apps to teach and learn English from the perspective of university students. This research can measure the levels as well as effectiveness of the employment of AI applications for teaching English based on deep learning techniques. There, the NLP based language enhancement has been carried out using Character-level recurrent neural network with back Propagation neural network (Cha_RNN_BPNN) based classification. With the help of this DL (deep learning) technique, it is possible to use AI methods to assist teachers in analysing and diagnosing students' English learning behaviour, replacing teachers in part to answer students' questions in a timely manner, and automatically grading assignments during the English teaching process. Experimental analysis shows Word Perplexity, Flesch-Kincaid (F-K) Grade Level for Readability, Cosine Similarity for Semantic Coherence, gradient change of NN, validation accuracy, and training accuracy of the proposed technique.

Publisher

Pensoft Publishers

Subject

General Computer Science,Theoretical Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3