A Novel Data-Driven Attack Method on Machine Learning Models

Author:

Sadıkoğlu EmreORCID,Kösesoy İrfanORCID,Gök MuratORCID

Abstract

With the increasing popularity and usage of artificial intelligence systems, it has become crucial to address their vulnerability to cyber-attacks. In this study, we propose a novel gradient descent-based method to generate fake data that can be accepted as positive by a targeted machine learning model. Our method is designed to generate a large number of positive samples with a minimal number of probes to the model, making it difficult to detect by security systems. Additionally, we develop an alternative model to the attacked model using a reverse engineering approach, trained on a dataset composed of the samples generated by our method. We evaluate the success of our proposed method and the alternative model through a series of experiments. We conducted experiments on six distinct datasets, each of which was trained using three separate machine-learning algorithms. This resulted in a total of eighteen unique models that were evaluated and compared in our analysis. In the evaluation of results, the most commonly used metrics in the literature, including effective attack rate (EAR), accuracy, precision, recall, and F1 score, were employed. Focusing particularly on EAR-oriented assessments, our method demonstrates its effectiveness with a notably high EAR of 97% in the combination of the kNN method and the Cancer dataset. According to the results of our experiments, the proposed method demonstrates high effectiveness as a data-driven attack method.

Publisher

Pensoft Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3