Data pre-processing methods for NPP equipment diagnostics algorithms: an overview

Author:

Katser Iurii D.ORCID,Kozitsin Vyacheslav O.,Maksimov Ivan V.,Larionov Denis A.,Kotsoev Konstantin I.

Abstract

The main tasks of diagnostics at nuclear power plants are detection, localization, diagnosis, and prognosis of the development of malfunctions. Analytical algorithms of varying degrees of complexity are used to solve these tasks. Many of these algorithms require pre-processed input data for high-quality and efficient operation. The pre-processing stage can help to reduce the volume of the analyzed data, generate additional informative diagnostic features, find complex dependencies and hidden patterns, discard uninformative source signals and remove noise. Finally, it can produce an improvement in detection, localization and prognosis quality. This overview briefly describes the data collected at nuclear power plants and provides methods for their preliminary processing. The pre-processing techniques are systematized according to the tasks performed. Their advantages and disadvantages are presented and the requirements for the initial raw data are considered. The references include both fundamental scientific works and applied industrial research on the methods applied. The paper also indicates the mechanisms for applying the methods of signal pre-processing in real-time. The overview of the data pre-processing methods in application to nuclear power plants is obtained, their classification and characteristics are given, and the comparative analysis of the methods is presented.

Publisher

Pensoft Publishers

Subject

General Medicine

Reference136 articles.

1. Outlier ensembles

2. Outlier Analysis

3. Theoretical Foundations and Algorithms for Outlier Ensembles

4. Outlier Ensembles

5. Automated process control system of the Belarusian NPP.;Akimov;Doklady BGUIR,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3