Subcriticality control elements in a reactor system with an extended plasma source of neutrons with regard for temperature

Author:

Knyshev Vladimir V.,Karengin Aleksandr G.,Shamanin Igor V.

Abstract

Materials have been selected for the shim rods and burnable absorbers to compensate for the excessive reactivity of the facility’s blanket part and to provide for the possibility of reactivity control in conjunction with a plasma source of neutrons. Burnable absorber is a layer of zirconium diboride (ZrB2) with a thickness of 100 μm applied to the surface of fuel compacts. Boron carbide (B4C) rods installed in the helium flow channels and used to bring the entire system into a state with keff = 0.95 have been selected as the shim rod material. Throughout its operating cycle, the facility is subcritical and is controlled using the neutron flux from the plasma source. Verified codes, WIMS-D5B (ENDF/B-VII.0) and MCU5TPU (MCUDВ50), as well as a modern system of constants were used for the calculations. The facility’s neutronic performance was simulated with regard for the changes in the inner structure and temperature of the microencapsulated fuel and fuel compact materials caused by long-term irradiation and by the migration of fission fragments and gaseous chemical compounds.

Publisher

Pensoft Publishers

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3