The bacterial hitchhiker’s guide to COI: Universal primer-based COI capture probes fail to exclude bacterial DNA, but 16S capture leaves metazoa behind

Author:

Hintikka SanniORCID,Carlsson Jeanette E.L.,Carlsson JensORCID

Abstract

Environmental DNA (eDNA) metabarcoding from water samples has, in recent years, shown great promise for biodiversity monitoring. However, universal primers targeting the cytochrome oxidase I (COI) marker gene popular in metazoan studies have displayed high levels of nontarget amplification. To date, enrichment methods bypassing amplification have not been able to match the detection levels of conventional metabarcoding. This study evaluated the use of universal metabarcoding primers as capture probes to either isolate target DNA or to remove nontarget DNA, prior to amplification, by using biotinylated versions of universal metazoan and bacterial barcoding primers, namely metazoan COI (mlCOIintF) and bacterial 16S (515F). Additionally, each step of the protocol was assessed by amplifying for both metazoan COI (mlCOIintF/jgHCO2198) and bacterial 16S (515F/806R) to investigate the effect on the metazoan and bacterial communities. Bacterial read abundance increased significantly in response to the captures (COI library), while the quality of the captured DNA was also improved. The metazoan-oriented probe captured bacterial DNA in a range that was also amplifiable with the 16S primers, demonstrating the ability of capture probes to isolate fragments of DNA spanning over a longer distance than perhaps expected, from eDNA. Although the use of the tested COI probe cannot be recommended for metazoan enrichment, based on the experimental results, the concept of capturing these longer fragments could be applied to metazoan metabarcoding. By using a truly conserved site without a high-level taxonomic resolution as a target for capture, it may be possible to isolate DNA fragments large enough to span over a nearby barcoding region (e.g., COI), which can then be processed through a conventional metabarcoding-by-amplification protocol.

Funder

Irish Research Council

Publisher

Pensoft Publishers

Subject

Nature and Landscape Conservation,Genetics,Animal Science and Zoology,Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3