Impact of hail-netting on Vitis vinifera L. canopy microclimate, leaf gas exchange, fruit quality, and yield in a semi-arid environment

Author:

Ruland K.,Montague ThayneORCID,Helwi Pierre

Abstract

Hail events have the potential to destroy grapevine shoots, reduce yield, and inflict economic loss upon growers. As a result, many grape growers have adopted the use of hail-netting to mitigate potential vine damage. Although hail-netting has been observed to prevent hail damage, Texas High Plains grape growers have expressed concerns regarding effects hail-netting may have on vine canopy microclimate, grapevine health, fruit maturity, fruit quality and yield. Therefore, over three growing seasons (2018 – 2020), field-grown vines (Vitis viniferaL. ‘Malbec’ and ‘Pinot gris’) were exposed to hail-netting, or grown without hail-netting. Each growing season canopy microclimate, leaf gas exchange, fruit maturity, yield parameters, and vegetative growth were monitored. Netting reduced canopy air and leaf temperature and decreased canopy vapour pressure deficit. By modifying light infiltration and leaf temperature, hail-netting altered leaf gas exchange. In addition, gas exchange differences were found between cultivars. Although fruit pH and total acidity were not different at harvest, fruit maturity measurements revealed total soluble solid development was influenced by netting and cultivar. Vine cluster numbers were greater for vines without netting and yield parameters were generally lower for ‘Malbec’ vines. Pruning weights indicate decreased vegetative growth for hail-netting and ‘Pinot gris’ vines. Results suggest grape-growers' use of hail-netting may allow growers to achieve fruit production goals. However, when using hail-netting, growers should consider possible management modifications due to changes in vine physiology, fruit maturation, and harvest schedules.

Publisher

Pensoft Publishers

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3