MODELFY: A Model-driven Solution for Decision Making based on Fuzzy Information

Author:

Castañeda María,G. Merayo MercedesORCID,Boubeta-Puig JuanORCID,Calvo Iván

Abstract

There exist areas, such as the disease prevention or inclement weather protocols, in which the analysis of the information based on strict protocols require a high level of rigor and security. In this situation, it would be desirable to apply formal methodologies that provide these features. In this scope, recently, it has been proposed a formalism, fuzzy automaton, that captures two relevant aspects for fuzzy information analysis: imprecision and uncertainty. However, the models should be designed by domain experts, who have the required knowledge for the design of the processes, but do not have the necessary technical knowledge. To address this limitation, this paper proposes MODELFY, a novel model-driven solution for designing a decision-making process based on fuzzy automata that allows users to abstract from technical complexities. With this goal in mind, we have developed a framework for fuzzy automaton model design based on a Domain- Specific Modeling Language (DSML) and a graphical editor. To improve the interoperability and functionality of this framework, it also includes a model-to-text transformation that translates the models designed by using the graphical editor into a format that can be used by a tool for data anal- ysis. The practical value of this proposal is also evaluated through a non-trivial medical protocol for detecting potential heart problems. The results confirm that MODELFY is useful for defining such a protocol in a user-friendly and rigorous manner, bringing fuzzy automata closer to domain experts.

Funder

Comunidad de Madrid

Publisher

Pensoft Publishers

Subject

General Computer Science,Theoretical Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Smart Fall Detection by Enhanced SVM with Fuzzy Logic Membership Function;JUCS - Journal of Universal Computer Science;2023-09-28

2. Model-Driven Engineering for Complex Event Processing: A Survey.;The Journal of Object Technology;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3