Abstract
Nowadays, hate speech detection from Arabic tweets attracts the attention of many researchers. Numerous systems and techniques have been proposed to address this classification challenge. Nonetheless, three major limits persist: the use of deep learning models with an excess of hyperparameters, the reliance on hand-crafted features, and the requirement for a huge amount of training data to achieve satisfactory performance. In this study, we propose Contextual Deep Random Forest (CDRF), a hate speech detection approach that combines contextual embedding and Deep Random Forest. From the experimental findings, the Arabic contextual embedding model proves to be highly effective in hate speech detection, outperforming the static embedding models. Additionally, we prove that the proposed CDRF significantly enhances the performance of Arabic hate speech classification.
Subject
General Computer Science,Theoretical Computer Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献