Deep Random Forest and AraBert for Hate Speech Detection from Arabic Tweets

Author:

Daouadi Kheir EddineORCID,Boualleg YaakoubORCID,Guehairia OussamaORCID

Abstract

Nowadays, hate speech detection from Arabic tweets attracts the attention of many researchers. Numerous systems and techniques have been proposed to address this classification challenge. Nonetheless, three major limits persist: the use of deep learning models with an excess of hyperparameters, the reliance on hand-crafted features, and the requirement for a huge amount of training data to achieve satisfactory performance. In this study, we propose Contextual Deep Random Forest (CDRF), a hate speech detection approach that combines contextual embedding and Deep Random Forest. From the experimental findings, the Arabic contextual embedding model proves to be highly effective in hate speech detection, outperforming the static embedding models. Additionally, we prove that the proposed CDRF significantly enhances the performance of Arabic hate speech classification.

Publisher

Pensoft Publishers

Subject

General Computer Science,Theoretical Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparing Pre-trained Language Model for Arabic Hate Speech Detection;Computación y Sistemas;2024-06-29

2. Systematic Investigation of Recent Pre-trained Language Model for Hate Speech Detection in Arabic Tweets;ACM Transactions on Asian and Low-Resource Language Information Processing;2024-06-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3