DNA barcoding for bio-surveillance of emerging pests and species identification in Afrotropical Prioninae (Coleoptera, Cerambycidae)

Author:

Javal MarionORCID,Terblanche JohnORCID,Conlong Desmond,Delahaye Norbert,Grobbelaar Elizabeth,Benoit Laure,Lopez-Vaamonde CarlosORCID,Haran Julien

Abstract

DNA barcoding has been succesfully used for bio-surveillance of forest and agricultural pests in temperate areas, but has few applications in the tropics and particulary in Africa. Cacosceles newmannii (Coleoptera: Cerambycidae) is a Prioninae species that is locally causing extensive damage in commercially-grown sugarcane in the KwaZulu-Natal Province in South Africa. Due to the risk of spread of this species to the rest of southern Africa and to other sugarcane growing regions, clear and easy identification of this pest is critical for monitoring and for phytosanitary services. The genus Cacosceles Newman, 1838 includes four species, most being very similar in morphology. The damaging stage of the species is the larva, which is inherently difficult to distinguish morphologically from other Cerambycidae species. A tool for rapid and reliable identification of this species was needed by plant protection and quarantine agencies to monitor its potential abundance and spread. Here, we provide newly-generated barcodes for C. newmannii that can be used to reliably identify any life stage, even by non-trained taxonomists. In addition, we compiled a curated DNA barcoding reference library for 70 specimens of 20 named species of Afrotropical Prioninae to evaluate DNA barcoding as a valid tool to identify them. We also assessed the level of deeply conspecific mitochondrial lineages. Sequences were assigned to 42 different Barcode Index Numbers (BINs), 28 of which were new to BOLD. Out of the 20 named species barcoded, 11 (52.4%) had their own unique Barcode Index Number (BIN). Eight species (38.1%) showed multiple BINs with no morphological differentiation. Amongst them, C. newmannii showed two highly divergent genetic clusters which co-occur sympatrically, but further investigation is required to test whether they could represent new cryptic species.

Publisher

Pensoft Publishers

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Reference55 articles.

1. DNA barcodes for bio-surveillance: regulated and economically important arthropod plant pests

2. Rapid, One-Step DNA Extraction for Insect Pest Identification by Using DNA Barcodes

3. Description de nouveaux Macrotomini africains (Coleoptera, Cerambycidae, Prioninae);Bouyer;Entomologia Africana,2010

4. Notes sur les priones africains du groupe de Macrotoma serripes (Fabricius, 1791) (Coleoptera, Cerambycidae, Prioninae, Macrotomini);Bouyer;Entomologia Africana,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Molecular identification of scale insect (Eulecanium giganteum) in Hibiscus rosa-sinensis;Journal of Experimental Biology and Agricultural Sciences;2022-08-30

2. Towards a multisensor station for automated biodiversity monitoring;Basic and Applied Ecology;2022-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3