Alignment-free classification of COI DNA barcode data with the Python package Alfie

Author:

Nugent Cameron M.ORCID,Adamowicz Sarah J.

Abstract

Characterization of biodiversity from environmental DNA samples and bulk metabarcoding data is hampered by off-target sequences that can confound conclusions about a taxonomic group of interest. Existing methods for isolation of target sequences rely on alignment to existing reference barcodes, but this can bias results against novel genetic variants. Effectively parsing targeted DNA barcode data from off-target noise improves the quality of biodiversity estimates and biological conclusions by limiting subsequent analyses to a relevant subset of available data. Here, we present Alfie, a Python package for the alignment-free classification of cytochrome c oxidase subunit I (COI) DNA barcode sequences to taxonomic kingdoms. The package determines k-mer frequencies of DNA sequences, and the frequencies serve as input for a neural network classifier that was trained and tested using ~58,000 publicly available COI sequences. The classifier was designed and optimized through a series of tests that allowed for the optimal set of DNA k-mer features and optimal machine learning algorithm to be selected. The neural network classifier rapidly assigns COI sequences of varying lengths to kingdoms with greater than 99% accuracy and is shown to generalize effectively and make accurate predictions about data from previously unseen taxonomic classes. The package contains an application programming interface that allows the Alfie package’s functionality to be extended to different DNA sequence classification tasks to suit a user’s need, including classification of different genes and barcodes, and classification to different taxonomic levels. Alfie is free and publicly available through GitHub (https://github.com/CNuge/alfie) and the Python package index (https://pypi.org/project/alfie/).

Publisher

Pensoft Publishers

Subject

Nature and Landscape Conservation,Genetics,Animal Science and Zoology,Molecular Biology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Approach for Classifying DNA Barcodes Using Ensemble NLP Models;2023 International Conference on Research Methodologies in Knowledge Management, Artificial Intelligence and Telecommunication Engineering (RMKMATE);2023-11-01

2. A Variational Autoencoder-Feed Forward Networks (VAE-FNN) Model for Classifying DNA Barcodes;2023 First International Conference on Advances in Electrical, Electronics and Computational Intelligence (ICAEECI);2023-10-19

3. Be positive: customized reference databases and new, local barcodes balance false taxonomic assignments in metabarcoding studies;PeerJ;2023-01-09

4. Applying convolutional neural networks to speed up environmental DNA annotation in a highly diverse ecosystem;Scientific Reports;2022-06-17

5. WalkIm: Compact image-based encoding for high-performance classification of biological sequences using simple tuning-free CNNs;PLOS ONE;2022-04-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3