Variable performance of DNA barcoding and morpholo­gical characteristics for the identification of Arctic black-legged Aedes (Diptera: Culicidae), with a focus on the Punctor subgroup

Author:

Villeneuve Carol-AnneORCID,Snyman Louwrens P.ORCID,Jenkins Emily J.,Lecomte NicolasORCID,Dusfour IsabelleORCID,Leighton Patrick A.

Abstract

Abstract Arctic ecosystems face increasing risks from vector-borne diseases due to climate-driven shifts in disease patterns and vector distribution. However, species identification challenges impact vector-borne disease surveillance, necessitates accurate identification. Aedes species are predominant among Arctic mosquitoes and pose health risks, with some species potentially carrying Jamestown Canyon and Snowshoe hare viruses. However, identifying Aedes species is challenging, especially under Arctic conditions and with complex adult traits. This study assessed the suitability of DNA barcoding (COI and ITS2 regions) and morphological characteristics for the identification of Arctic black-legged Aedes. It also aimed to evaluate the reliability of publicly available sequences. Our analysis focused on Aedes impiger, Aedes nigripes, and two species from the Punctor subgroup – Aedes hexodontus and Aedes punctor. In our study, the COI barcoding region distinguished Ae. impiger and Ae. nigripes but not within the species of the Punctor subgroup. In addition, the ITS2 barcoding region did not differentiate the species. When we evaluated GenBank and BOLD sequences, we found issues of under-representation and misidentifications, particularly within the Punctor subgroup. Based on these results, we recommend addressing identification difficulties, particularly within the Punctor subgroup, and advocate for more comprehensive morphological and molecular identification strategies. Integrating morphology and DNA barcoding holds promise for robust disease surveillance in Arctic regions, yet challenges persist, especially in complex species groups like the Punctor subgroup. Tackling these issues is pivotal to ensuring accurate vector status determination and reliable disease risk assessments in a rapidly changing Arctic ecosystem.

Publisher

Pensoft Publishers

Subject

Insect Science,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3