Extended Taxonomic Curation: Moving beyond species lists to linking species data

Author:

Upham NathanORCID,Powell CalebORCID,Prado LauraORCID,Franz NicoORCID,Sterner BeckettORCID

Abstract

Taxonomy is at the center of modern biodiversity science. No species can be systematically studied until it is defined, and no observation can be linked to related data without a taxonomic label. However, taxonomy is also a science in constant flux—even well-studied groups like Mammalia have fluctuated by >25% in recognized species in the last decade (Burgin et al. 2018, MDD 2022a, MDD 2022b). As a result, there are calls to create a “global list of accepted species” to increase taxonomic stability, particularly for policy decisions in biodiversity conservation and management (Garnett et al. 2020). The counterargument notes that forcing definitional consensus is likely to further inequities, and that a pluralistic, coordinated approach to taxonomy can be achieved with innovative cyberinfrastructure designs and services (Sterner et al. 2020, Franz and Sterner 2018). Here, we propose that digitally “extended” taxonomic curation can play new and innovative roles in linking observational data to alternative taxonomic concepts; and enabling fit-for-use taxonomy to inform policy decisions. linking observational data to alternative taxonomic concepts; and enabling fit-for-use taxonomy to inform policy decisions. Taxonomic curators (TCs) have traditionally limited their activities to making lists of accepted species and higher taxa. However, most of today's biodiversity questions require observational data (e.g., specimen occurrences) that are taxonomically coherent, not just name lists, and for those linked data to be digitally available in public databases. If the collective activities of TCs can be effectively unified across distributed networks, they might facilitate the transition to Extended Specimen Networks of taxonomically coherent biodiversity data, a core goal of current research initiatives (e.g., Lendemer et al. (2020)). Beyond lists of species names is the domain of what names mean in practice (i.e., taxonomic concepts), which often differs by author (Fig. 1). Here we argue that curating the various lines of evidence that represent taxonomic concepts—what we call Species Meaning Artifacts (SMArts)—is a promising strategy for keeping track of how species splits and lumps will affect observational data records in the Global Biodiversity Information Facility (GBIF) or National Center for Biotechnology Information (NCBI). Instead of labeling records by a static name, records can be digitally associated with SMArt evidence from alternative taxonomies (e.g., geographic range maps before/after a species split). Networks of TCs curating digital SMArts will enable 'taxonomically intelligent' data aggregation (Bisby 2000), a long-pursued goal in biodiversity data science that, once realized, promises to enable investigations ranging from viral spillover to biodiversity loss (Upham et al. 2021).

Publisher

Pensoft Publishers

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3