Study into the physical chemistry and technology of alkali liquid metal coolants for nuclear and thermonuclear power plants

Author:

Sorokin Aleksandr P.,Kuzina Yuliya A.,Ashadullin Radomir Sh.,Alekseev Viktor V.

Abstract

It is shown that, as the result of developing alkali liquid metal coolants, including sodium, eutectic sodium-potassium alloy, lithium and cesium, the scientific basis has been established for their application in nuclear power. The paper presents data from investigations of thermophysical, neutronic and physicochemical properties and characteristics of various alkali liquid metal coolants, the content of solid-phase and dissolved impurities in coolants, mass transport of impurities in circulation circuits with alkali liquid metal coolants, development of systems for removal of impurities, and control of the content of impurities in alkali liquid metal coolants. Alkali liquid metal coolants are considered as a part of a system that includes a structural material in contact with the coolant, and a gas space that compensates for the thermal expansion of the coolant. The state of the system is defined by the physicochemical properties of the system’s components. And the coolant and the structural materials also represent subsystems consisting of a base material, a coolant and impurities contained both in the material and in the coolant. It has been shown that each alkali liquid metal coolant has its own set of impurities that define its technology. It depends on the physicochemical properties of the solution of the structural material impurities and components in the coolant. Objectives have been formulated for investigating further alkali liquid metal coolants, as stemming from the need to improve the efficiency, environmental friendliness, reliability and safety, and for extending the life of nuclear power plants in operation or under design. Alkali liquid metals are promising candidate materials for being used in thermonuclear power not only as the coolant but also as the tritium breeding medium. These include, first of all, lithium and its eutectic alloy with lead (17 at. % of lithium). The possibility for using lithium or a lithium-lead alloy as a coolant in the blanket of the international thermonuclear power reactor is compared.

Publisher

Pensoft Publishers

Subject

General Medicine

Reference20 articles.

1. Sodium coolant purification systems for a nuclear power station equipped with a BN-1200 reactor

2. Modeling of the Mass Transfer of Steel Corrosion Products in Sodium Loops

3. Sensors for Intra-Reactor Control of Hydrogen and Oxygen in Liquid Sodium. VANT. Ser.;Blokhin;Yaderno-Reaktornye Konstanty,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Electrolysis-Distillation Approach for Producing Potassium Metal;Metallurgical and Materials Transactions B;2023-11-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3