Abstract
In the face of insect decline, monitoring projects are launched widely to assess trends of insect populations. Collecting over long time periods results in large numbers of samples with thousands of individuals that are often just stored in freezers waiting to be further processed. As the time-consuming process of sorting and identifying specimens prevents taxonomists from working on mass samples, important information on species composition remains unknown and taxonomically neglected species remain undiagnosed. Size fractioning of bulk samples can improve sample handling and, thus, can help to overcome the taxonomic impediment. In this paper, we evaluate the efficiency of the fractionator in separating Hymenoptera families from a Malaise trap sample of a meadow ecosystem over a two week interval to make them available for further morphological identification. The fractionator system by Buffington and Gates (2008) was used to separate the sample in two size classes – a large (macro) and a small (micro) fraction – and Hymenoptera specimens were then counted and identified on family level. In total, 2,449 Hymenoptera specimens were found in the macro fraction and 3,016 in the micro fraction (5,465 specimens in total). For 24 out of 34 Hymenoptera families (71%), separation was significant. This study illustrates the efficiency of the fractionator and its potential to improve workflows dealing with specimen-rich Malaise trap samples.
Subject
Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献