Black gold rush - Evaluating the efficiency of the Fractionator in separating Hymenoptera families in a meadow ecosystem over a two week period

Author:

Haas-Renninger MauraORCID,Schwabe NoaORCID,Moser MarinaORCID,Krogmann LarsORCID

Abstract

In the face of insect decline, monitoring projects are launched widely to assess trends of insect populations. Collecting over long time periods results in large numbers of samples with thousands of individuals that are often just stored in freezers waiting to be further processed. As the time-consuming process of sorting and identifying specimens prevents taxonomists from working on mass samples, important information on species composition remains unknown and taxonomically neglected species remain undiagnosed. Size fractioning of bulk samples can improve sample handling and, thus, can help to overcome the taxonomic impediment. In this paper, we evaluate the efficiency of the fractionator in separating Hymenoptera families from a Malaise trap sample of a meadow ecosystem over a two week interval to make them available for further morphological identification. The fractionator system by Buffington and Gates (2008) was used to separate the sample in two size classes – a large (macro) and a small (micro) fraction – and Hymenoptera specimens were then counted and identified on family level. In total, 2,449 Hymenoptera specimens were found in the macro fraction and 3,016 in the micro fraction (5,465 specimens in total). For 24 out of 34 Hymenoptera families (71%), separation was significant. This study illustrates the efficiency of the fractionator and its potential to improve workflows dealing with specimen-rich Malaise trap samples.

Publisher

Pensoft Publishers

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Phenology of microhymenoptera and their potential threat by insect decline;Journal of Hymenoptera Research;2024-08-30

2. Collection, Preservation and Rearing;Parasitoid Wasps of South East Asia;2023-12-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3