Abstract
Doryctobracon areolatus (Szépligeti), a solitary endoparasitoid native to the Neotropics, attacks eggs and early instar larvae of Anastrepha fruit flies, and can enter diapause under tropical and subtropical conditions. We aimed to test if biological attributes, such as size, flight ability, starvation resistance, longevity and fecundity of diapausing individuals differ from those of non-diapausing ones. Parasitoids were obtained from a laboratory colony reared on Anastrepha ludens (Loew) larvae. Parasitized host puparia were sorted in two cohorts according to their diapause condition. Developmental time from egg to adult ranged from 18 to 31 days in non-diapausing parasitoids, and 70 to 278 days for diapausing individuals. Pupal weight and adult measurements were higher in non-diapausing than in diapausing parasitoids. There were no differences in adult longevity, starvation resistance, and emergence between diapausing and non-diapausing wasps. Flight ability and fecundity rates were greater in the non-diapausing than in the diapause cohort. The proportion of female offspring was greater in the non-diapausing cohort (42.5%), whereas in the diapausing cohort the male offspring proportion was greater (62.4%). Both cohorts produced diapause offspring, but the non-diapausing cohort produced more (26.6%) than the diapausing one (9.1%). Maternal age had a significant effect on the proportion of diapause offspring: in 26 to 34 days old non-diapausing females, 78.9% of their offspring entered into diapause. These results confirmed that diapause affects the biological attributes of D. areolatus. The observed differences contribute to better understand the diapause influence on the colonization and rearing process of this species and its use as biocontrol agent.
Subject
Insect Science,Ecology, Evolution, Behavior and Systematics
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Plate Section (PDF Only);Insect Diapause;2022-02-03
2. Subject Index;Insect Diapause;2022-02-03
3. Species Index;Insect Diapause;2022-02-03
4. References;Insect Diapause;2022-02-03
5. Wider Implications;Insect Diapause;2022-02-03