Anaerobic Isoprene-Degrading Microorganisms and their Impact on Microbial Methane Dynamics in Deep-Sea Carbonates and Eucalyptus-Leaf Sediments

Author:

Giri Samikshya,Prouty Nancy,Beckmann Sabrina

Abstract

Isoprene, a highly abundant biogenic volatile organic compound, has emerged as a crucial yet overlooked factor in addressing climate change. Despite its widespread production in all forms of life, comprehensive data on its global biogeochemical cycle remain scarce. Isoprene's reactivity in the atmosphere influences methane concentrations, with detrimental implications for climate, air quality, and health. Conversely, methane is abundant in marine and terrestrial subsurface environments, where deep-sea carbonates serve as hotspots for microorganisms performing anaerobic methane oxidation—an essential process in long-term methane storage and removal from the marine carbon cycle. Recent studies by Beckmann et al. (2020), Prouty et al. (2020) have shed light on novel metabolic pathways utilized by microbial communities in carbonates for methane oxidation. Similarly, in terrestrial environments, eucalyptus trees, as the highest emitters of isoprene, may harbor microorganisms capable of metabolizing isoprene alongside methane-oxidation and formation in eukalyptus leaf detritus. However, little is known about the fate of isoprene and the potential microbial communities involved in its metabolism within deep-sea carbonates and eucalyptus-leaf sediments, potentially impacting methane metabolism. Our study aims to unravel the anaerobic pathways of microbial isoprene degradation and investigate the effects of isoprene abundance and degradation on microbial methane production and oxidation. We detected anaerobic isoprene-degradation in deep-sea carbonates and terrestrial eukalyptus-leave sediments, where methane oxidation and methane formation was pronounced. Surprisingly, the presence of isoprene inhibited mcirobial methane-oxidation as well as methane-formation, suggesting an substantial impact of the presence of isoprene on methane cycling and storage. We are currently characterizing and isolating the microorganisms involved in the isoprene and methane metabolism in these enrichment cultures.

Publisher

Pensoft Publishers

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3