Elevated bacterial endospores associated with thermogenic hydrocarbon seeps in deep sea sediments.

Author:

Rattray JayneORCID,Elizondo Gretta,Sloan Kathryn,Morrison Natasha,Fowler Martin,Gittins Daniel,Webb Jamie,Campbell D,MacDonald Adam,Hubert Casey

Abstract

Introduction and approach Bacterial endospore distributions in marine sediments are influenced by geological conduits providing routes for subsurface to surface microbial dispersal. To examine this phenomenon in more detail, endospore abundance was determined by quantifying the biomarker 2,6-pyridine dicarboxylic acid (dipicolinic acid or DPA) in 16 deep sea sediment cores from hydrocarbon prospective areas in the NW Atlantic Ocean. DPA is specific to endospore-forming bacteria from the phylum Firmicutes and constitutes a significant percentage of endospore dry weight. DPA is therefore a potential biomarker for sediment dwelling endospores and geological conduits. Piston cores (10), gravity cores (3) and box cores (3) were collected during two expeditions to the Scotian Slope in the NW Atlantic Ocean off the east coast of Canada aboard the CCGS Hudson in 2016 and 2018 (Campbell (2016), Campbell and Normandeau (2018), Campbell and MacDonald. (2016)). Sampling sites were 1970 to 2791 m water depth, with piston cores (n=3) ranging from 344 to 953 cmbsf and gravity cores (n=10) ranging from 43 to 739 cmbsf, box coring captured the top 25 cmbsf. To address the efficacy of DPA biomarker analysis as a tool for hydrocarbon seep location we established a modified Tb3+ chelation method (Lomstein and Jørgensen (2012), Rattray (2021)). Sediment samples were extracted using acid hydrolysis, chelated with Tb3+ and analysed using HPLC fluorescence, measuring at 270 nm emission and 545 nm excitation. DPA concentrations were converted to Endospore numbers were calculated using 2.24 fmol DPA per endospore (Fichtel 2007), a conversion factor routinely used in other studies (Braun 2017, Gittins 2022, Heuer 2020, Lomstein 2012, Rattray 2022, Wörmer 2019, Lomstein and Jørgensen 2012). DPA concentrations were compared with measurements of over 250 different gaseous and liquid hydrocarbon compounds used to assess for the presence of thermogenic hydrocarbons. Results and discussion Samples and locations were assessed as being thermogenic hydrocarbon gas positive (stations 16-41, 18-07) or thermogenic hydrocarbon negative based on the abundance of C1-C5 hydrocarbons in sediments sampled from the same cores. Station 18-14 contained hydrocarbons from biogenic origin. Station 18-06 is the only site with higher endospore abundance but that was determined to be hydrocarbon negative. Deep water Scotian Slope sediment cores show high endospore abundance correlates with thermogenic hydrocarbon seeps (Fig. 1). Cores from locations lacking evidence for thermogenic hydrocarbons generally contained significantly lower endospore abundances, with the notable exception of site 18-06. This potential paleoenvironmental hydrocarbon seep site highlights the utility of a DPA proxy for potentially identifying ancient hydrocarbon seeps and investigating past geological systems. The association of high endospore abundances with thermogenic hydrocarbons and the quantity of gas expulsion points to an interesting new biological tool for understanding hydrocarbon seepage in the deep biosphere, based on DPA assays in marine sediments.

Publisher

Pensoft Publishers

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3