Microbial Impacts on Colloid-Radionuclide Interactions

Author:

Morgan Chloe,Byrd Natalie,Robinson Callum,Lopez-Odriozola Laura,Woodall Sean,Shaw Samuel,Natrajan Louise,Morris Katherine,Lloyd Jonathan

Abstract

Microorganisms can play an important role on the behaviour of colloids in natural and engineered environments, which in turn can control the mobility of associated metals and radionuclides. This is especially true in the nuclear fuel cycle, where radionuclides (including uranium) can interact with a broad range of inorganic colloids. This is relevant to the legacy spent nuclear fuel ponds at Sellafield, which house a diverse inventory of waste from the early Magnox reactors. These reactors used uranium metal as a fuel encased in a magnesium non-oxide cladding. Corrosion of the cladding results in the release of radionuclides, primarily uranium, and the formation of brucite (Mg(OH)2) phases which are present both in the corroded Magnox sludge at the base of the pond and suspended in the water column as colloids (Gregson et al. 2011). These brucite colloids have the potential to mobilise insoluble phases providing an important pathway for radionuclide migration. The spent nuclear fuel ponds are maintained at high pH to minimise corrosion of the cladding, however significant corrosion has still occurred. Despite the seemingly inhospitable conditions in spent nuclear fuel ponds, numerous studies have found microorganisms capable of surviving in spent nuclear fuel ponds (Dekker et al. 2014, Foster et al. 2020, Ruiz-Lopez et al. 2020). Previous work has demonstrated increased abiotic sorption of strontium to brucite in the presence of organic matter derived from Pseudanabaena catenata (Ashworth et al. 2018), which dominates algal blooms in the ponds. In this study we focus on uranium interactions with colloidal brucite in the presence of microbes adapted to high pH environments under conditions relevant to the spent nuclear fuel ponds at Sellafield.

Publisher

Pensoft Publishers

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3