Microbial Architects of the Cold Deserts: A Comprehensive Research of Biological Soil Crusts in the High-Altitudinal Cold Deserts of the Western Himalayas

Author:

Čapková KateřinaORCID,Řeháková KláraORCID

Abstract

Our research has focused on Biological Soil Crusts (BSCs) in the Western Himalayas, specifically in Tibetan Plateau and Karakoram (Ladakh, India) along the elevation gradient spanning a range of 4300–6000 m a.s.l. where habitats like cold deserts, steppes, alpine and subnival vegetation, as well as primary successional stages behind retreating glaciers are present. These regions are characterised by extensive development of BSCs, with cyanobacteria as the dominant component. BSCs are of great significance for the sustainability and development of ecosystems of arid regions worldwide. Their activity is limited to brief periods when precipitation or dew hydrates microbial cells, enabling metabolic activity. Despite the crucial role played by these phototrophic microbial communities in arid and semi-arid ecosystems worldwide, remote mountain regions like the Tibetian Tibetan Plateau and Karakoram have received limited attention in this regard. More than 15 years long research allowed us to determine several critical aspects of BSCs’ activity and performance: We conducted laboratory and in-situ experiments Fig. 1 to assess the potential photosynthetic and heterotrophic activity of BSCs from high-altitude cold deserts. The experiments involved measuring the production and consumption of CO2 and O2 by BSCs under various temperature and moisture conditions, as well as light intensity. By manipulating these factors, we could differentiate the activities of heterotrophs and autotrophs within the BSCs. The results of these experiments were then analysed in the context of soil nutrient stoichiometry, phylogenetic structure, and microbial community biomass. Using these data, we developed a mechanistic mathematical model to predict the overall metabolic activity of BSCs in response to the major climatic drivers: temperature and moisture. This knowledge could help us to predict the reaction of BSC to climatic changes and reveal if the arid areas in Western Himalayas will act as CO2 sources or sink. We further investigated the composition and content of pigments in microbial soil communities across various habitats along the elevation gradient in the Tibetan Plateau (Rehakova and Capkova 2019). Soil microbes have evolved complex metabolic strategies, such as producing photoprotective and photosynthetic pigments, to survive the environmental stress caused by high UV radiation, fluctuating temperatures, and drought. We also examined the effects of environmental factors such as altitude, mountain range, and soil physico-chemical parameters on the composition and biovolume of phototrophs which dominate the BSc in the studied region (Řeháková 2011, Janatková and Řeháková 2013). This was accomplished through multivariate redundancy analysis and variance partitioning. Interestingly, the phylogenetic diversity and morphotypes’ composition were similar between the Karakoram and Tibetan Plateau (Čapková 2015). Our investigation represents the first recorded assessment of the phylogenetic diversity of cyanobacterial communities within biological soil crusts in the Western Himalayas, specifically at altitudes exceeding 5000 m. We conducted laboratory and in-situ experiments Fig. 1 to assess the potential photosynthetic and heterotrophic activity of BSCs from high-altitude cold deserts. The experiments involved measuring the production and consumption of CO2 and O2 by BSCs under various temperature and moisture conditions, as well as light intensity. By manipulating these factors, we could differentiate the activities of heterotrophs and autotrophs within the BSCs. The results of these experiments were then analysed in the context of soil nutrient stoichiometry, phylogenetic structure, and microbial community biomass. Using these data, we developed a mechanistic mathematical model to predict the overall metabolic activity of BSCs in response to the major climatic drivers: temperature and moisture. This knowledge could help us to predict the reaction of BSC to climatic changes and reveal if the arid areas in Western Himalayas will act as CO2 sources or sink. We further investigated the composition and content of pigments in microbial soil communities across various habitats along the elevation gradient in the Tibetan Plateau (Rehakova and Capkova 2019). Soil microbes have evolved complex metabolic strategies, such as producing photoprotective and photosynthetic pigments, to survive the environmental stress caused by high UV radiation, fluctuating temperatures, and drought. We also examined the effects of environmental factors such as altitude, mountain range, and soil physico-chemical parameters on the composition and biovolume of phototrophs which dominate the BSc in the studied region (Řeháková 2011, Janatková and Řeháková 2013). This was accomplished through multivariate redundancy analysis and variance partitioning. Interestingly, the phylogenetic diversity and morphotypes’ composition were similar between the Karakoram and Tibetan Plateau (Čapková 2015). Our investigation represents the first recorded assessment of the phylogenetic diversity of cyanobacterial communities within biological soil crusts in the Western Himalayas, specifically at altitudes exceeding 5000 m.

Publisher

Pensoft Publishers

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3