Improving conventional household greensand treatment for efficient Mn(II) removal from drinking water

Author:

Li Binrui,Hausladen Debra

Abstract

Geogenic contaminants pose a global threat to ensuring access to safe drinking water. Manganese (Mn) is a naturally-occurring redox-active element which in its reduced form, Mn(II), is a widespread groundwater contaminant. Prolonged consumption of water containing high levels of Mn has been linked to adverse effects on memory, attention, motor skills, and nervous system function, particularly in vulnerable groups including pregnant individuals and young children. In addition, Mn can lead to aesthetic issues such as altered taste, clogging, and damage to plumbing systems. While Mn has historically been regulated as an aesthetic concern, a mounting body of evidence linking health issues to Mn exposure through drinking water has heightened the challenges of using groundwater to meet drinking water needs. Recently, Health Canada established a health guideline which set a maximum acceptable concentration for total Mn in drinking water of 120 μg/L. Greensand (GS) filters are commonly used in conventional drinking water treatment systems for Mn(II) removal due to their cost-effectiveness and high exchange capacity. However, under certain conditions conventional GS systems may have a low Mn(II) removal efficiency (Galangashi et al. 2021) and encounter challenges related to Mn leaching (Outram et al. 2018), resulting in failure to meet health-related standards. Furthermore, GS filters typically undergo regeneration using potassium permanganate (KMnO4), a mild oxidant that results in the release of additional Mn waste byproducts during the regeneration of the filter. Recent research suggests that Mn-containing materials can effectively activate peroxymonosulfate (PMS) and produce reactive oxygen species (ROS) that facilitate contaminant degradation. This study aims to investigate whether PMS may be used to improve greensand treatment systems and enhance Mn(II) removal from drinking water. Batch experiments were performed to test the Mn(II) removal efficiency across a range of PMS concentrations (0-500 μM) and GS mass (0.1-3 g). Aqueous Mn concentrations were measured over time using inductively coupled plasma optical emission spectrometry (ICP-OES). Solid-phase reaction products were characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The mechanisms of Mn oxidation were identified by quenching experiments and electron paramagnetic resonance (EPR) spectroscopy. The activation of PMS by greensand significantly increased the removal efficiency of Mn(II) compared to the conventional method (e.g., 96.83(±3.77)% at PMS = 500 µM vs. 5.77(±11.1)% at PMS = 0 µM). Our results attribute the mechanism underlying increased Mn removal in our improved treatment method to advanced oxidation processes that involve free radicals (e.g., hydroxyl radical (·OH) and sulfate radical (SO4·-)) and non-free radical pathways, with Mn oxides as the main oxidation products. This study provides a new treatment method for more efficient Mn(II) removal while simultaneously reducing Mn wastes produced during the regeneration cycle which allows for a more sustainable and holistic management of invaluable groundwater resources.

Publisher

Pensoft Publishers

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3