What is the Consumer Attitude toward Healthcare Services? A Transfer Learning Approach for Detecting Emotions from Consumer Feedback

Author:

Alshouha BasharORCID,Serrano-Guerrero JesusORCID,Elizondo DavidORCID,Romero Francisco P.ORCID,Olivas Jose A.ORCID

Abstract

The capability of offering patient-centered healthcare services involves knowing the consumer needs. Many of these needs can be conveyed through opinions about services that can be found on social networks. The consumers/patients can express their complains, satisfaction, frustration, etc. in terms of feelings and emotions toward those services; for that reason, it is pivotal to accurately detect them. There are many recent techniques to detect sentiments or emotions, but one of the most promising is transfer learning. This allows adapting a model originally trained for a task to a different one by fine-tuning. Following this idea, the primary objective of this research is to study whether several pre-trained language models can be adapted to a task such as patient emotion detection in an efficient manner. For this purpose, seven clinical and biomedical pre-trained models and four domain-general models have been adapted to detect multiple emotions. These models have been tuned using a dataset consisting of real patient opinions which convey several emotions per opinion. The experiments carried out state the domain-specific pre-trained models outperform the domain-general ones. Particularly, Clinical-Longformer obtained the best scores, 98.18% and 95.82% in terms of accuracy and F1-score, respectively. Analyzing the patient feedback available on social networks may provide valuable knowledge about consumer sentiments and emotions, especially for healthcare managers. This information can be very interesting for purposes such as assessing the quality of healthcare services or designing patient-centered services.

Funder

Agencia Estatal de Investigación

Publisher

Pensoft Publishers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3