Computational substantiation of technological characteristics of the closure stage of nuclear fuel cycle using code VIZART

Author:

Makeyeva Inga R.,Pugachev Vasiliy Yu.,Shmidt Olga V.,Rykunova Anastasiya A.,Shadrin Andrey Yu.

Abstract

There exist different variants of organizing the closure of nuclear fuel cycle (CNFC) depending on fast reactor type, fuel types, station or centralized allocation of closed nuclear fuel cycle stages. One of the ways to verify and estimate engineering solution is mathematical modeling of radiochemical technology which in the end will allow to optimize composite technological process in order to increase effectiveness and reduce cost. In order to calculate the balance of material flows of process circuits and individual production sections in the stationary and dynamic modes, with taking into account the isotopic composition evolution, a software package VIZART (Virtual Plant of Radiochemical Technologies) was developed, allowing the user to assemble the required sequence of operations for any part of the process scheme and perform the calculation of material balance for all flows of the circuit, as well as to optimize the equipment operating modes and provide the necessary data to justify the safety of certain limits and the entire process circuit. The following capabilities of code VIZART for computational substantiation of CNFC technology design and characteristics are considered: material balance calculation, cyclogram creation, determination of the most loaded parts of processing lines, estimation of fissile materials accumulating in devices and intermediate vessels, optimization of productivity of nodes and devices.

Publisher

Pensoft Publishers

Reference16 articles.

1. Project “Proryv” – the technological basis for large-scale nuclear power engineering. RAS Proceedings.;Adamov;Energy,2015

2. Prediction based on expert opinions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3